Skip to main content
Log in

Topography and neurochemistry of the enteric ganglia in the proventriculus of the duck (Anas platyrhynchos)

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The topographical distribution of the enteric ganglia has been investigated in the proventriculus of the duck using protein gene product 9.5 (PGP 9.5) immunohistochemistry. Myenteric ganglia were usually located between the outer longitudinal and the inner circular muscle layer. Submucous ganglia were sparsely distributed and seemed to be substituted by ganglia located in the tunica mucosa. The neurochemical profile of proventricular ganglion cells was also investigated using nicotinamide adenine dinucleotide phosphate reduced-diaphorase (NADPH-d)-histochemistry and pituitary adenylate cyclase activating peptide (PACAP)/galanin (Gal) double-labelling immunohistochemistry. The majority of mucosal ganglion cells were shown to contain the NADPH-d enzyme and both the investigated peptides. These findings provide evidence for the presence of a mucosal ganglionated plexus in the glandular stomach of birds. Moreover, the neurochemical characteristics of this plexus suggest that it plays an important role in regulating several mucosal functions and, in particular, the production and the composition of the gastric juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2a–f.
Fig. 3a–f.
Fig. 4a–h.

Similar content being viewed by others

References

  • Ali HA, McLelland J (1978) Avian enteric nerve plexuses. A histochemical study. Cell Tissue Res 189:537–548

    CAS  PubMed  Google Scholar 

  • Ali HA, McLelland J (1979) Neuron number in the intestinal myenteric plexus of the domestic fowl (Gallus gallus). Anat Histol Embryol 8:277–283

    CAS  PubMed  Google Scholar 

  • Ali HA, McLelland J (1980) Variations in neuron size in the avian intestinal myenteric plexus. Anat Anz 147:348–353

    CAS  PubMed  Google Scholar 

  • Balaskas C, Saffrey MJ, Burnstock G (1995) Distribution and colocalization of NADPH-diaphorase activity, nitric oxide synthase immunoreactivity, and VIP immunoreactivity in the newly hatched chicken gut. Anat Rec 243:10–18

    CAS  PubMed  Google Scholar 

  • Balemba OB, Grøndahl ML, Mbassa GK, Semuguruka WD, Hay-Schmidt A, Skadhauge E, Dantzer V (1998) Organization of the enteric nervous system in the submucous and mucous layers of the small intestine of the pig studied by VIP and neurofilament proteins immunohistochemistry. J Anat 192:257–267

    Article  CAS  PubMed  Google Scholar 

  • Balemba OB, MBassa GK, Semuguruka WD, Assey RJ, Kahwa CKB, Hay-Schmidt A, Dantzer V (1999) The topography, architecture and structure of the enteric nervous system in the jejunum and ileum of cattle. J Anat 195:1–9

    Article  PubMed  Google Scholar 

  • Balemba OB, Hay-Schmidt A, Assey RJ, Kahwa CKB, Semuguruka WD, Dantzer V (2002) An immunohistochemical study of the organization of ganglia and nerve fibres in the mucosa of the porcine intestine. Anat Histol Embryol 31:237–246

    Article  CAS  PubMed  Google Scholar 

  • Bauer FE, Zintel A, Kenny MJ, Calder D, Ghatei MA, Bloom SR (1989) Inhibitory effect of galanin on postprandial gastrointestinal motility and gut hormone release in humans. Gastroenterology 97:260–264

    CAS  PubMed  Google Scholar 

  • Boros A, Timmermans JP, Fekete E, Adriaensen D, Scheuermann DW (1994) Appearance and some neurochemical features of nitrergic neurons in the developing quail digestive tract. Histochemistry 101:365–374

    CAS  PubMed  Google Scholar 

  • Botella A, Delvaux M, Bueno L, Frexinos J (1992) Intracellular pathway triggered by galanin to induce contraction of pig ileum smooth muscle cells. J Physiol 458:475–486

    CAS  PubMed  Google Scholar 

  • Botella A, Jeanneton O, Delvaux M, Frexinos J, Bueno L (1995) Iloprost: intracellular Ca2+-dependent contractile effect on isolated smooth muscle cells from guinea-pig ileum. J Pharm Pharmacol 47:398–401

    CAS  PubMed  Google Scholar 

  • Bradley OC, Grahame T (1960) The structure of the fowl, 4th edn. Oliver and Boyd, Edinburgh

  • Bredkjaer HE, Wulff BS, Emson PC, Fahrenkrug J (1994) Location of PHM/VIP mRNA in human gastrointestinal tract detected by in situ hybridisation. Cell Tissue Res 276:229–238

    Article  CAS  PubMed  Google Scholar 

  • Burns GA, Cummings JF (1993) Neuropeptide distributions in the colon, caecum, and jejunum of the horse. Anat Rec 236:341–350

    CAS  PubMed  Google Scholar 

  • Calhoun ML (1954) Microscopic anatomy of the digestive system of the chicken. Iowa State College Press, Ames, Iowa

  • Chodnik KS (1947) A cytological study of the alimentary tract of the domestic fowl (Gallus domesticus). Q J l Microsc Sci 88:419–443

    Google Scholar 

  • Costa M, Furness JB, Llewellyn-Smith IJ (1987) Histochemistry of the enteric nervous system. In: Jonson LR, Christensen J, Jackson MJ, Jacobson ED, Walsh JH (eds) Physiology of the gastrointestinal tract. Raven Press, New York, pp 1–39

  • Desai KM, Sessa WC, Vane JR (1991) Involvement of nitric oxide in the reflex relaxation of the stomach to accomodate food or fluid. Nature 351:477–479

    Google Scholar 

  • Drasch O (1881) Beiträge zur Kenntniss des feineren Baues des Dünndarms, insbesondere über die Nerven desselben. Sitzber Akad Wiss Wien 82, 3rd div:168–198

    Google Scholar 

  • Ekblad E, Rokaeus A, Hakanson R, Sundler F (1985) Galanin nerve fibers in the rat gut: distribution, origin and projections. Neuroscience 16:355–363

    Article  CAS  PubMed  Google Scholar 

  • Ekblad E, Alm P, Sundler F (1994a) Distribution, origin and projections of nitric oxide synthase-containing neurons in gut and pancreas. Neuroscience 63:233–248

    Article  CAS  PubMed  Google Scholar 

  • Ekblad E, Mulder H, Eddmann R, Sundler F (1994b) NOS-containing neurons in the rat gut and coeliac ganglia. Neuropharmacology 33:1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Ekblad E, Mei Q, Sundler F (2000) Innervation of the gastric mucosa. Microsc Res Tech 48:241–257

    Article  CAS  PubMed  Google Scholar 

  • Fang SY, Wu RW, Christensen J (1993) Intramucosal nerve cells in human small intestine. J Auton Nerv Syst 44:129–136

    Article  CAS  PubMed  Google Scholar 

  • Farner DS (1960) Digestion and the digestive system. In: Marshall AJ (ed) Biology and comparative physiology of birds, vol I. Academic Press, New York

  • Fontaine J, Lebrun P (1989) Galanin: Ca2+-dependent contractile effects on isolated mouse distal colon. Eur J Pharmacol 164:583–586

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, Edinburgh

  • Furness JB, Li ZS, Young HM, Forstermann U (1994) Nitric oxide synthase in the enteric nervous system of the guinea pig: a quantitative description. Cell Tissue Res 277:139–149

    CAS  PubMed  Google Scholar 

  • Gershon MD, Kirchgessner AL, Wade PR (1994) Functional anatomy of the enteric nervous system. In: Johnson LR (ed) Physiology of the gastrointestinal tract. Raven Press, New York, pp 381–422

  • Hasebe K, Horie S, Yano S, Watanabe K (1998) Inhibitory effect of Nω-nitro-L-arginine on gastric secretion induced by secretagogues and vagal stimulation in the isolated stomach. Eur J Pharmacol 350:229–236

    Article  CAS  PubMed  Google Scholar 

  • Hasebe K, Horie S, Komasaka M, Yano S, Watanabe K (2001) Stimulatory effects of nitric oxide donors on gastric acid secretion in isolated mouse stomach. Eur J Pharmacol 420:159–164

    Article  CAS  PubMed  Google Scholar 

  • Hodges RD (1974) The histology of the fowl. Academic Press, New York

  • Jarvinen MK, Wollmann WJ, Powrozek TA, Schultz JA, Powley TL (1999) Nitric oxide synthase-containing neurons in the myenteric plexus of the rat gastrointestinal tract: distribution and regional density. Anat Embryol 199:99–112

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Kitamura M, Korolkiewicz RP, Takeuchi K (1998a) Role of nitric oxide in regulation of gastric acid secretion in rats: effects of NO donors and NO synthase inhibitor. Br J Pharmacol 123:839–846

    CAS  PubMed  Google Scholar 

  • Kato S, Korolkiewicz R, Rekowski P, Szyk A, Sugawa Y, Takeuchi K (1998b) Inhibition of gastric acid secretion by galanin in rats. Relation to endogenous histamine release. Regul Pept 74:53–59

    Article  CAS  PubMed  Google Scholar 

  • King SC, Slater P, Turnberg LA (1989) Autoradiographic localization of binding sites for galanin and VIP in small intestine. Peptides 10:313–317

    PubMed  Google Scholar 

  • Korman LY, Sayid H, Bass B, Moody TW, Harmon JW (1989) Distribution of vasoactive intestinal polypeptide and substance P receptors in human colon and small intestine. Dig Dis Sci 34:1100–1108

    CAS  PubMed  Google Scholar 

  • Lassmann G (1975) Vorkommen von Ganglienzellen im Schleimhautstroma von Colon, Sigma und Rectum. Virchows Arch A Pathol Anat Histol 365:257–261

    CAS  PubMed  Google Scholar 

  • Li ZS, Young HM, Furness JB (1994) Nitric oxide synthase in neurons of the gastrointestinal tract of an avian species, Coturnix coturnix. J Anat 184:261–272

    CAS  PubMed  Google Scholar 

  • Lindström E, Håkanson R (2001) Neurohormonal regulation of secretion from isolated rat stomach ECL cells: a critical reappraisal. Regul Pept 97:169–180

    PubMed  Google Scholar 

  • Lindström E, Björkqvist M, Boketoft Å, Chen D, Zhao CM, Kimura K, Håkanson R (1997) Neurohormonal regulation of histamine and pancreastatin secretion from isolated rat stomach ECL cells. Regul Pept 71:73–86

    PubMed  Google Scholar 

  • Martìnez A, Lòpez J, Barreneches MA, Sesma P (1991) Immunocytochemical and ultrastructural characterization of endocrine cells in chicken proventriculus. Cell Tissue Res 263:541–548

    PubMed  Google Scholar 

  • Martìnez A, Lòpez J, Sesma P (2000) The nervous system of the chicken proventriculus: an immunocytochemical and ultrastructural study. Histochem J 32:63–70

    Article  PubMed  Google Scholar 

  • McLelland J (1993) Apparatus digestorius (Systema alimentarium). In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (eds) Handbook of avian anatomy: nomina anatomica avium. The Nuttal Ornithological Club, Cambridge, Massachusetts, pp 301–327

  • Mensah-Brown EPK, Lawrence PA (2001) Neurotransmitters regulating acid secretion in the proventriculus of the Houbara bustard (Chlamydotis undulata): a morphological viewpoint. J Morphol 248:175–184

    Article  CAS  PubMed  Google Scholar 

  • Mestres P, Diener M, Rummel W (1992a) Electron microscopy of the mucosal plexus of the rat colon. Acta Anat 143:275–282

    CAS  Google Scholar 

  • Mestres P, Diener M, Rummel W (1992b) Histo- and immunocytochemical characterization of the neurons of the mucosal plexus in the rat colon. Acta Anat 143:268–274

    CAS  Google Scholar 

  • Miller SM, Reed D, Sarr MG, Farrugia G, Szurszewski JH (2001) Haem oxygenase in enteric nervous system of human stomach and jejunum and colocalization with nitric oxide synthase. Neurogastroenterol Motil 13:121–131

    Article  CAS  PubMed  Google Scholar 

  • Mirabella N, Lamanna C, Assisi L, Botte V, Cecio A (2000) The relationships of nicotinamide adenine dinucleotide phosphate-d to nitric oxide synthase, vasoactive intestinal polypeptide, galanin and pituitary adenylate activating polypeptide in pigeon gut neurons. Neurosci Lett 293:147–151

    CAS  PubMed  Google Scholar 

  • Mirabella N, Squillacioti C, Colitti M, Germano G, Pelagalli A, Paino G (2002) Pituitary adenylate cyclase activating peptide (PACAP) immunoreactivity and mRNA expression in the duck gastrointestinal tract. Cell Tissue Res 308:347–359

    Article  CAS  PubMed  Google Scholar 

  • Newson B, Ahlman H, Dahlström A, Das Gupta TK, Nyhus LM (1979) Are there sensory neurons in the mucosa of the mammalian gut? Acta Physiol Scand 105:521–523

    CAS  PubMed  Google Scholar 

  • Peng X, Feng JB, Yan H, Zhao Y, Wang SL (2001) Distribution of nitric oxide synthase in stomach myenteric plexus of rats. World J Gastroenterol 7:852–854

    CAS  PubMed  Google Scholar 

  • Schultzeberg M, Hökfelt T, Nilsson G et al. (1980) Distribution of peptide- and catecholamine-containing neurons in the gastrointestinal tract of rat and guinea-pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine α-hydroxylase. Neuroscience 5:689–744

    CAS  PubMed  Google Scholar 

  • Shemann M, Schaaf C, Mader M (1995) Neurochemical coding of the enteric neurons in the guinea pig stomach. J Comp Neurol 353:161–178

    CAS  PubMed  Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry. Wiley, New York

  • Stöhr P (1934) Mikroskopische Studien zur Innervation des Magen-Darmkanales III. Z Zellforsch Mikrosk Anat 21:243–278

    Google Scholar 

  • Stöhr P (1949) Mikroskopische Studien zur Innervation des Magen-Darmkanales V. Z Zellforsch Mikrosk Anat 34:1–37

    Google Scholar 

  • Suzuki M, Ohmori Y, Watanabe T (1996) Immunohistochemical studies on the intramural nerve in the chicken intestine. Eur J Histochem 40:109–118

    CAS  PubMed  Google Scholar 

  • Timmermans JP, Scheurmann DW, Stach W, Adriaensen D, Groodt-Lasseel MHA de (1990) Distinct distribution of CGRP-, enkephalin-, somatostatin-, substance P-, VIP- and serotonin-containing neurons in the two submucosal ganglionic neural networks of the porcine small intestine. Cell Tissue Res 260:367–379

    CAS  PubMed  Google Scholar 

  • Vau E (1932) Über die subglandulären Ganglienzelle in der Magenwand einiger Haussäugetiere. Anat Anz 73:380–385

    Google Scholar 

  • Vittoria A, Castaldo L, La Mura E, Lucini C, Cecio A (1992) VIP-immunoreactive nerve structures of the gastrointestinal tract in the developing and adult domestic duck. Arch Histol Cytol 55:361–374

    CAS  PubMed  Google Scholar 

  • Vittoria A, Costagliola A, Carrese E, Mayer B, Cecio A (2000) Nitric oxide-containing neurons in the bovine gut, with special reference to their relationship with VIP anf galanin. Arch Histol Cytol 63:357–368

    CAS  PubMed  Google Scholar 

  • Wedel T, Roblick U, Gleiss J, Schiedeck T, Bruch HP, Kühnel W, Krammer HJ (1999) Organisation of the enteric nervous system in the human colon demonstrated by wholemount immunohistochemistry with special reference to the submucous plexus. Anat Anz 181:327–337

    CAS  PubMed  Google Scholar 

  • Yokotani K, Murakami Y, Okuma Y, Osumi Y (1997) Centrally applied nitric oxide donors inhibit vagally evoked rat gastric acid secretion: involvement of sympathetic outflow. Jpn J Pharmacol 74:337–340

    CAS  PubMed  Google Scholar 

  • Zheng ZL, Rogers RC, Travagli RA (1999) Selective gastric projections of nitric oxide synthase-containing vagal brainstem neurons. Neuroscience 90:685–694

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Mirabella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirabella, N., Squillacioti, C., Genovese, A. et al. Topography and neurochemistry of the enteric ganglia in the proventriculus of the duck (Anas platyrhynchos) . Anat Embryol 207, 101–108 (2003). https://doi.org/10.1007/s00429-003-0342-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-003-0342-5

Keywords

Navigation