Skip to main content

Advertisement

Log in

Atypical goblet cell hyperplasia occurs in CPAM 1, 2, and 3, and is a probable precursor lesion for childhood adenocarcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Congenital pulmonary airway malformation (CPAM) is a developmental disorder. Types 1-2-3 are the more common ones. Atypical goblet cell hyperplasia (AGCH) in CPAM might be a precursor lesion for pulmonary adenocarcinomas. In nine out of 33 CPAM cases, types 1–3 showed foci of goblet cell proliferations. As these cells completely replace normal epithelium, we prefer to name these proliferations AGCH. In 5 cases, adenocarcinomas were seen (AC). All cases were analyzed for proteins possibly being associated with CPAM development: fibroblast growth factor 10 (FGF10) and receptor 2 (FGFR2), forkhead box A1 (FOXA1) and A2 (FOXA2), MUC protein 5AC (MUC5AC), human epidermal growth factor receptor 2 (erbB2, HER2/neu), hepatocyte nuclear factor 4α (HNF4α), SOX2, and Ying Yang protein 1 (YY1). By next generation sequencing, AGCH and adenocarcinomas were evaluated for driver mutations. Expression for FGF10, FGFR2, FOXA1, and FOXA2 was seen in CPAM epithelium and stroma, but not differently in AGCH and AC. SOX2 was positive in CPAM epithelium and AGCH, however weakly in AC. YY1 and MUC5AC showed more intense staining in AGCH and AC than in CPAM epithelium. HER2 was intensely expressed in AC and less intensely in AGCH, but not in CPAM epithelium. KRAS mutation in exon 2 was detected in all AGCH and AC, but was absent in CPAM epithelia. AGCH can arise in CPAM types 1–3. Oncogenic KRAS mutation seems to be the oncogenic driver already in AGCH, proving its role as a precursor lesion for adenocarcinoma. It might upregulate HER2 at the protein level. YY1 seems to be involved in carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Borczuk AC, Qian F, Kazeros A, Eleazar J, Assaad A, Sonett JR, Ginsburg M, Gorenstein L, Powell CA (2009) Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol 33:462–469. https://doi.org/10.1097/PAS.0b013e318190157c

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boucherat O, Jeannotte L, Hadchouel A, Delacourt C, Benachi A (2016) Pathomechanisms of congenital cystic lung diseases: focus on congenital cystic adenomatoid malformation and pleuropulmonary blastoma. Paediatr Respir Rev 19:62–68. https://doi.org/10.1016/j.prrv.2015.11.011

    Article  PubMed  Google Scholar 

  3. Boucherat O, Landry-Truchon K, Berube-Simard FA, Houde N, Beuret L, Lezmi G, Foulkes WD, Delacourt C, Charron J, Jeannotte L (2015) Epithelial inactivation of Yy1 abrogates lung branching morphogenesis. Development 142:2981–2995. https://doi.org/10.1242/dev.120469

    Article  CAS  PubMed  Google Scholar 

  4. Buisine MP, Devisme L, Copin MC, Durand-Reville M, Gosselin B, Aubert JP, Porchet N (1999) Developmental mucin gene expression in the human respiratory tract. Am J Respir Cell Mol Biol 20:209–218

    Article  CAS  Google Scholar 

  5. Cingolani P, Platts A, Wang L, Coon M, Nguyen T, Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms. SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92

    Article  CAS  Google Scholar 

  6. Clark JC, Tichelaar JW, Wert SE, Itoh N, Perl AK, Stahlman MT, Whitsett JA (2001) FGF-10 disrupts lung morphogenesis and causes pulmonary adenomas in vivo. Am J Phys Lung Cell Mol Phys 280:L705–L715

    CAS  Google Scholar 

  7. Cook M, Caswell RC, Richards RJ, Kay J, Tatnell PJ (2001) Regulation of human and mouse procathepsin E gene expression. Eur J Biochem 268:2658–2668

    Article  CAS  Google Scholar 

  8. Deutsch GH, Young LR, Deterding RR, Fan LL, Dell SD, Bean JA, Brody AS, Nogee LM, Trapnell BC, Langston C, Albright EA, Askin FB, Baker P, Chou PM, Cool CM, Coventry SC, Cutz E, Davis MM, Dishop MK, Galambos C, Patterson K, Travis WD, Wert SE, White FV (2007) Diffuse lung disease in young children: application of a novel classification scheme. Am J Respir Crit Care Med 176:1120–1128. https://doi.org/10.1164/rccm.200703-393OC

    Article  PubMed  PubMed Central  Google Scholar 

  9. Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X (2011) Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development (Cambridge, England) 138:971–981. https://doi.org/10.1242/dev.053694

    Article  CAS  PubMed Central  Google Scholar 

  10. Downard CD, Calkins CM, Williams RF, Renaud EJ, Jancelewicz T, Grabowski J, Dasgupta R, McKee M, Baird R, Austin MT, Arnold MA, Goldin AB, Shelton J, Islam S (2017) Treatment of congenital pulmonary airway malformations: a systematic review from the APSA outcomes and evidence based practice committee. Pediatr Surg Int 33:939–953. https://doi.org/10.1007/s00383-017-4098-z

    Article  PubMed  Google Scholar 

  11. Fowler DJ, Gould SJ (2015) The pathology of congenital lung lesions. Semin Pediatr Surg 24:176–182. https://doi.org/10.1053/j.sempedsurg.2015.02.002

    Article  PubMed  Google Scholar 

  12. Fujimoto N, Wislez M, Zhang J, Iwanaga K, Dackor J, Hanna AE, Kalyankrishna S, Cody DD, Price RE, Sato M, Shay JW, Minna JD, Peyton M, Tang X, Massarelli E, Herbst R, Threadgill DW, Wistuba II, Kurie JM (2005) High expression of ErbB family members and their ligands in lung adenocarcinomas that are sensitive to inhibition of epidermal growth factor receptor. Cancer Res 65:11478–11485

    Article  CAS  Google Scholar 

  13. Gabriele M, Vulto-van Silfhout AT, Germain PL, Vitriolo A, Kumar R, Douglas E, Haan E, Kosaki K, Takenouchi T, Rauch A, Steindl K, Frengen E, Misceo D, Pedurupillay CRJ, Stromme P, Rosenfeld JA, Shao Y, Craigen WJ, Schaaf CP, Rodriguez-Buritica D, Farach L, Friedman J, Thulin P, McLean SD, Nugent KM, Morton J, Nicholl J, Andrieux J, Stray-Pedersen A, Chambon P, Patrier S, Lynch SA, Kjaergaard S, Torring PM, Brasch-Andersen C, Ronan A, van Haeringen A, Anderson PJ, Powis Z, Brunner HG, Pfundt R, Schuurs-Hoeijmakers JHM, van Bon BWM, Lelieveld S, Gilissen C, Nillesen WM, Vissers L, Gecz J, Koolen DA, Testa G, de Vries BBA YY1 haploinsufficiency causes an intellectual disability syndrome featuring transcriptional and chromatin dysfunction. Am J Hum Genet 100:907–925

  14. Geles A, Gruber-Moesenbacher U, Quehenberger F, Manzl C, Al Effah M, Grygar E, Juettner-Smolle F, Popper HH (2015) Pulmonary mucinous adenocarcinomas: architectural patterns in correlation with genetic changes, prognosis and survival. Virchows Arch. https://doi.org/10.1007/s00428-015-1852-2

  15. Gonzaga S, Henriques-Coelho T, Davey M, Zoltick PW, Leite-Moreira AF, Correia-Pinto J, Flake AW (2008) Cystic adenomatoid malformations are induced by localized FGF10 overexpression in fetal rat lung. Am J Respir Cell Mol Biol 39:346–355. https://doi.org/10.1165/rcmb.2007-0290OC

    Article  CAS  PubMed  Google Scholar 

  16. Grabner B, Schramek D, Mueller KM, Moll HP, Svinka J, Hoffmann T, Bauer E, Blaas L, Hruschka N, Zboray K, Stiedl P, Nivarthi H, Bogner E, Gruber W, Mohr T, Zwick RH, Kenner L, Poli V, Aberger F, Stoiber D, Egger G, Esterbauer H, Zuber J, Moriggl R, Eferl R, Gyorffy B, Penninger JM, Popper H, Casanova E (2015) Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun 6:6285. https://doi.org/10.1038/ncomms7285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Granata C, Gambini C, Balducci T, Toma P, Michelazzi A, Conte M, Jasonni V (1998) Bronchioloalveolar carcinoma arising in congenital cystic adenomatoid malformation in a child: a case report and review on malignancies originating in congenital cystic adenomatoid malformation. Pediatr Pulmonol 25:62–66

    Article  CAS  Google Scholar 

  18. Guerrero S, Casanova I, Farre L, Mazo A, Capella G, Mangues R (2000) K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res 60:6750–6756

    CAS  PubMed  Google Scholar 

  19. Guo H, Cajaiba MM, Borys D, Gutierrez MC, Yee H, Drut RM, Drut R, Askin F, Reyes-Mugica M, Greco MA (2007) Expression of epidermal growth factor receptor, but not K-RAS mutations, is present in congenital cystic airway malformation/congenital pulmonary airway malformation. Hum Pathol 38:1772–1778. https://doi.org/10.1016/j.humpath.2007.04.009

    Article  PubMed  Google Scholar 

  20. Gupta K, Das A, Menon P, Kakkar N, Rao KL, Joshi K (2012) Revisiting the histopathologic spectrum of congenital pulmonary developmental disorders. Fetal Pediatr Pathol 31:74–86. https://doi.org/10.3109/15513815.2011.650287

    Article  PubMed  Google Scholar 

  21. Ioachimescu OC, Mehta AC (2005) From cystic pulmonary airway malformation, to bronchioloalveolar carcinoma and adenocarcinoma of the lung. Eur Respir J 26:1181–1187

    Article  CAS  Google Scholar 

  22. Ishida M, Igarashi T, Teramoto K, Hanaoka J, Iwai M, Yoshida K, Kagotani A, Tezuka N, Okabe H (2013) Mucinous bronchioloalveolar carcinoma with K-ras mutation arising in type 1 congenital cystic adenomatoid malformation: a case report with review of the literature. Int J Clin Exp Pathol 6:2597–2602

    PubMed  PubMed Central  Google Scholar 

  23. Jancelewicz T, Nobuhara K, Hawgood S (2008) Laser microdissection allows detection of abnormal gene expression in cystic adenomatoid malformation of the lung. J Pediatr Surg 43:1044–1051

    Article  Google Scholar 

  24. Kamata T, Yoshida A, Shiraishi K, Furuta K, Kosuge T, Watanabe S, Asamura H, Tsuta K (2016) Mucinous micropapillary pattern in lung adenocarcinomas: a unique histology with genetic correlates. Histopathology 68:356–366. https://doi.org/10.1111/his.12763

    Article  PubMed  Google Scholar 

  25. Kim MY, Kang CH, Park SH (2014) Multifocal synchronous mucinous adenocarcinomas arising in congenital pulmonary airway malformation: a case report with molecular study. Histopathology 65:926–932. https://doi.org/10.1111/his.12515

    Article  PubMed  Google Scholar 

  26. Kitaichi M, Yousem S (2002) Congenital pulmonary airway malformation - a new name for and an expanded classification of congenital cystic adenomatoid malformation of the lung. Histopathology 41:424–458

    Article  Google Scholar 

  27. Langston C, Dishop MK (2009) Diffuse lung disease in infancy: a proposed classification applied to 259 diagnostic biopsies. Pediatr Dev Pathol 12:421–437. https://doi.org/10.2350/08-11-0559.1

    Article  PubMed  Google Scholar 

  28. Lantuejoul S, Nicholson AG, Sartori G, Piolat C, Danel C, Brabencova E, Goldstraw P, Brambilla E, Rossi G (2007) Mucinous cells in type 1 pulmonary congenital cystic adenomatoid malformation as mucinous bronchioloalveolar carcinoma precursors. Am J Surg Pathol 31:961–969

    Article  Google Scholar 

  29. Lezmi G, Verkarre V, Khen-Dunlop N, Vibhushan S, Hadchouel A, Rambaud C, Copin MC, Rittie JL, Benachi A, Fournet JC, Delacourt C (2013) FGF10 Signaling differences between type I pleuropulmonary blastoma and congenital cystic adenomatoid malformation. Orphanet J Rare Dis 8:130. https://doi.org/10.1186/1750-1172-8-130

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moldvay J, Barbai T, Bogos K, Piurko V, Fillinger J, Popper HH, Timar J (2013) EGFR autophosphorylation but not protein score correlates with histologic and molecular subtypes in lung adenocarcinoma. Diagn Mol Pathol 22:204–209. https://doi.org/10.1097/PDM.0b013e3182936957

    Article  CAS  PubMed  Google Scholar 

  31. Morini F, Zani A, Conforti A, van Heurn E, Eaton S, Puri P, Rintala R, Lukac M, Kuebler JF, Friedmacher F, Wijnen R, Tovar JA, Pierro A, Bagolan P (2018) Current management of congenital pulmonary airway malformations: a “European pediatric surgeons’ association” survey. Eur J Pediatr Surg 28:1–5. https://doi.org/10.1055/s-0037-1604020

    Article  PubMed  Google Scholar 

  32. Musteanu M, Blaas L, Zenz R, Svinka J, Hoffmann T, Grabner B, Schramek D, Kantner HP, Muller M, Kolbe T, Rulicke T, Moriggl R, Kenner L, Stoiber D, Penninger JM, Popper H, Casanova E, Eferl R (2012) A mouse model to identify cooperating signaling pathways in cancer. Nat Methods 9:897–900. https://doi.org/10.1038/nmeth.2130

    Article  CAS  PubMed  Google Scholar 

  33. Ochieng JK, Schilders K, Kool H, Boerema-De Munck A, Buscop-Van Kempen M, Gontan C, Smits R, Grosveld FG, Wijnen RM, Tibboel D, Rottier RJ (2014) Sox2 regulates the emergence of lung basal cells by directly activating the transcription of Trp63. Am J Respir Cell Mol Biol 51:311–322. https://doi.org/10.1165/rcmb.2013-0419OC

    Article  CAS  PubMed  Google Scholar 

  34. Panagopoulos I, Thorsen J, Gorunova L, Micci F, Haugom L, Davidson B, Heim S (2013) RNA sequencing identifies fusion of the EWSR1 and YY1 genes in mesothelioma with t(14;22)(q32;q12). Genes Chromosom Cancer 52:733–740. https://doi.org/10.1002/gcc.22068

    Article  CAS  PubMed  Google Scholar 

  35. Pogoriler J, Swarr D, Kreiger P, Adzick NS, Peranteau W (2019) Congenital cystic lung lesions: redefining the natural distribution of subtypes and assessing the risk of malignancy. Am J Surg Pathol 43:47–55. https://doi.org/10.1097/pas.0000000000000992

    Article  PubMed  PubMed Central  Google Scholar 

  36. Popper HH (2015) Lung adenocarcinomas: comparison between mice and men. Methods Mol Biol 1267:19–43. https://doi.org/10.1007/978-1-4939-2297-0_2

    Article  CAS  PubMed  Google Scholar 

  37. Rossi G, Gasser B, Sartori G, Migaldi M, Costantini M, Mengoli MC, Piccioli S, Cavazza A, Rivasi F (2012) MUC5AC, cytokeratin 20 and HER2 expression and K-RAS mutations within mucinogenic growth in congenital pulmonary airway malformations. Histopathology 60:1133–1143. https://doi.org/10.1111/j.1365-2559.2011.04170.x

    Article  PubMed  Google Scholar 

  38. Singh G, Coffey A, Neely R, Lambert D, Sonett J, Borczuk AC, Gorenstein L (2016) Pulmonary Kirsten rat sarcoma virus mutation positive mucinous adenocarcinoma arising in a congenital pulmonary airway malformation, mixed type 1 and 2. Ann Thorac Surg 102:e335–e337. https://doi.org/10.1016/j.athoracsur.2016.01.104

    Article  PubMed  Google Scholar 

  39. Stacher E, Ullmann R, Halbwedl I, Gogg-Kammerer M, Boccon-Gibod L, Nicholson AG, Sheppard MN, Carvalho L, Franca MT, Macsweeney F, Morresi-Hauf A, Popper HH (2004) Atypical goblet cell hyperplasia in congenital cystic adenomatoid malformation as a possible preneoplasia for pulmonary adenocarcinoma in childhood: a genetic analysis. Hum Pathol 35:565–570

    Article  CAS  Google Scholar 

  40. Stephanov O, Robert Y, De Fraipont F, Piolat C, Sartelet H (2018) Mucinous adenocarcinoma with lepidic pattern and with K-RAS mutation in a newborn with antenatal diagnosis of congenital pulmonary airway malformation. Histopathology 72:530–531. https://doi.org/10.1111/his.13393

    Article  PubMed  Google Scholar 

  41. Stewart KM, Morrisey EE (2016) Early development of the mammalian lung-branching morphogenesis. In: Jobe AH, Whitsett JA, Abman SH (eds) Fetal and neonatal lung development: clinical correlates and technologies for the future. Cambridge University Press, Cambridge, pp 22–33

    Chapter  Google Scholar 

  42. Stocker JT (2002) Congenital pulmonary airway malformation: a new name and an expanded classification of congenital cystic adenomatoid malformation of the lung. Histopathol 41(Suppl.2):424–431

    Google Scholar 

  43. Stocker JT (2009) Cystic lung disease in infants and children. Fetal Pediatr Pathol 28:155–184

    Article  Google Scholar 

  44. Stocker JT, Madewell JE, Drake RM (1977) Congenital cystic adenomatoid malformation of the lung: classification and morphologic spectrum. Hum Pathol 8:155–171

    Article  CAS  Google Scholar 

  45. Sugano M, Nagasaka T, Sasaki E, Murakami Y, Hosoda W, Hida T, Mitsudomi T, Yatabe Y (2013) HNF4alpha as a marker for invasive mucinous adenocarcinoma of the lung. Am J Surg Pathol 37:211–218. https://doi.org/10.1097/PAS.0b013e31826be303

    Article  PubMed  Google Scholar 

  46. Summers RJ, Shehata BM, Bleacher JC, Stockwell C, Rapkin L (2010) Mucinous adenocarcinoma of the lung in association with congenital pulmonary airway malformation. J Pediatr Surg 45:2256–2259. https://doi.org/10.1016/j.jpedsurg.2010.07.008

    Article  PubMed  Google Scholar 

  47. Thakkar HS, Durell J, Chakraborty S, Tingle BL, Choi A, Fowler DJ, Gould SJ, Impey L, Lakhoo K (2017) Antenatally detected congenital pulmonary airway malformations: the Oxford experience. Eur J Pediatr Surg 27:324–329. https://doi.org/10.1055/s-0036-1593379

    Article  PubMed  Google Scholar 

  48. Ton TV, Hong HH, Anna CH, Dunnick JK, Devereux TR, Sills RC, Kim Y (2004) Predominant K-ras codon 12 G --> a transition in chemically induced lung neoplasms in B6C3F1 mice. Toxicol Pathol 32:16–21. https://doi.org/10.1080/01926230490260682

    Article  CAS  PubMed  Google Scholar 

  49. Ullmann R, Morbini P, Halbwedl I, Bongiovanni M, Gogg-Kammerer M, Papotti M, Gabor S, Renner H, Popper HH (2004) Protein expression profiles in adenocarcinomas and squamous cell carcinomas of the lung generated using tissue microarrays. J Pathol 203:798–807

    Article  CAS  Google Scholar 

  50. Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang SL, Wert S, Stahlman MT, Whitsett JA (2005) Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J Biol Chem 280:13809–13816

    Article  CAS  Google Scholar 

  51. Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT, Fulkerson PC, Rothenberg ME, Whitsett JA (2004) Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 131:953–964. https://doi.org/10.1242/dev.00966

    Article  CAS  PubMed  Google Scholar 

  52. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Popper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 54 kb)

ESM 2

FOXA1 antibodies stained focally CPAM epithelia (nuclear), whereas most carcinoma cells were either unstained or weakly positive (a). Similarly CPAM cells were weakly stained for FOXA2, most carcinoma cell were negative (b). Bars, 50 μm (PNG 1037 kb)

High Resolution (TIF 8173 kb)

ESM 3

Nuclear expression of SOX2 in CPAM epithelia including goblet cells. Normal lung epithelia were negative. Bar, 50 μm (PNG 367 kb)

High Resolution (TIF 3888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakler, F., Aykutlu, U., Brcic, L. et al. Atypical goblet cell hyperplasia occurs in CPAM 1, 2, and 3, and is a probable precursor lesion for childhood adenocarcinoma. Virchows Arch 476, 843–854 (2020). https://doi.org/10.1007/s00428-019-02732-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-019-02732-4

Keywords

Navigation