Skip to main content

Advertisement

Log in

Thirty years of Epstein-Barr virus-associated gastric carcinoma

  • Review and Perspectives
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Thirty years have passed since a possible association of Epstein-Barr virus (EBV) with gastric carcinoma was reported. We now know EBV-associated gastric carcinoma to be a specific subtype of gastric carcinoma. Global epigenetic methylation and counteraction of the antitumour microenvironment are two major characteristics of this subtype of gastric carcinoma. Recent development of therapeutic modalities for gastric carcinoma, such as endoscopic mucosal dissection and immune checkpoint inhibitor therapy, has made the presence of EBV infection a biomarker for the treatment of gastric carcinoma. This review presents a portrait of EBV-associated gastric carcinoma from initiation to maturity that we define as the ‘gastritis-infection-cancer sequence’, followed by its molecular abnormalities and interactions with immune checkpoint molecules and the microenvironment. EBV non-coding RNAs (microRNA and circular RNA) and exosomes derived from EBV-infected cells that were previously behind the scenes are now recognized for their roles in EBV-associated gastric carcinoma. The virus utilizes cellular machinery skilfully to control infected cells and their microenvironment. We should thus strive to understand virus-host interactions more fully in the following years to overcome this virus-driven subtype of gastric carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 15:702–703. https://doi.org/10.1016/s0140-6736(64)91524-7

    Article  Google Scholar 

  2. Young LS, Yap LF, Murray PG (2015) Epstein-Barr virus: more than 50 years old and still providing surprises. Nature Rev Cancer 16:789–802. https://doi.org/10.1038/nrc.2016.92

    Article  CAS  Google Scholar 

  3. Burke AP, Yen TS, Shekitka KM, Sobin LH (1990) Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol 3:377–380

    CAS  PubMed  Google Scholar 

  4. Howe JG, Steitz JA (1986) Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc Natl Acad Sci U S A 83:9006–9010

    Article  CAS  Google Scholar 

  5. Wu TC, Mann RB, Charache P, Hayward SD, Staal S, Lambe BC, Ambinder RF (1990) Detection of EBV gene expression in reed-Sternberg cells of Hodgkin's disease. Int J Cancer 46:801–804

    Article  CAS  Google Scholar 

  6. Shibata D, Tokunaga M, Uemura Y, Sato E, Tanaka S, Weiss LM (1991) Association of Epstein-Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelioma-like carcinoma. Am J Pathol 139:469–474

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tokunaga M, Land CE, Uemura Y, Tokudome T, Tanaka S, Sato E (1993) Epstein-Barr virus in gastric carcinoma. Am J Pathol 143:1250–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fukayama M, Hayashi Y, Iwasaki Y, Chong J, Ooba T, Takizawa T, Koike M, Mizutani S, Miyaki M, Hirai K (1994) Epstein-Barr virus-associated gastric carcinoma and Epstein-Barr virus infection of the stomach. Lab Investig 71:73–81

    CAS  PubMed  Google Scholar 

  9. Murphy G, Pfeiffer R, Camargo MC, Rabkin CS (2009) Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterol 137:824–833. https://doi.org/10.1053/j.gastro.2009.05.001

    Article  Google Scholar 

  10. Tsao S, Tsang CM, Lo KW (2017) Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc London B Biol Sci 372:20160270. https://doi.org/10.1098/rstb.2016.0270

    Article  CAS  PubMed  Google Scholar 

  11. Fukayama M, Kunita A, Kaneda A (2018) Gastritis-infection-cancer sequence of Epstein-Barr virus-associated gastric carcinoma. Adv Exp Med Biol 1045:437–457. https://doi.org/10.1007/978-981-10-7230-7_20

    Article  CAS  PubMed  Google Scholar 

  12. Niller Niller HH, Banati F, Salamon D (2016) Minarovits J (2016) Epigenetic alterations in Epstein-Barr virus-associated diseases. Adv Exp Med Biol 879:39–69. https://doi.org/10.1007/978-3-319-24738-0_3

    Article  CAS  PubMed  Google Scholar 

  13. The Cancer Genome Atlas Research Network (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209. https://doi.org/10.1038/nature13480

    Article  CAS  Google Scholar 

  14. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, Liu XQ, Sher X, Jung H, Lee M, Lee S, Park SH, Park JO, Park YS, Lim HY, Lee H, Choi M, Talasaz A, Kang PS, Cheng J, Loboda A, Lee J, Kang WK (2018) Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med 24:1449–1458. https://doi.org/10.1038/s41591-018-0101-z

    Article  CAS  PubMed  Google Scholar 

  15. Gao P, Lazare C, Cao C, Meng Y, Wu P, Zhi W, Lin S, Wei J, Huang X, Xi L, Chen G, Hu J, Ma D, Wu P (2019) Immune checkpoint inhibitors in the treatment of virus-associated cancers. J Hematol Oncol 12:58. https://doi.org/10.1186/s13045-019-0743-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fukayama M, Ushiku T (2011) Epstein-Barr virus-associated gastric carcinoma. Pathol Res Pract 207:529–537. https://doi.org/10.1016/j.prp.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  17. Song HJ, Srivastava A, Lee J, Kim YS, Kim KM, Kang WK, Kim M, Kim S, Park CK, Kim S (2010) Host inflammatory response predicts survival of patients with Epstein-Barr virus-associated gastric carcinoma. Gastroenterology 139:84–92.e2. https://doi.org/10.1053/j.gastro.2010.04.002

    Article  PubMed  Google Scholar 

  18. Camargo MC, Kim WH, Chiaravalli AM, Kim KM, Corvalan AH, Matsuo K, Yu J, Sung JJ, Herrera-Goepfert R, Meneses-Gonzalez F, Kijima Y, Natsugoe S, Liao LM, Lissowska J, Kim S, Hu N, Gonzalez CA, Yatabe Y, Koriyama C, Hewitt SM, Akiba S, Gulley ML, Taylor PR, Rabkin CS (2014) Improved survival of gastric cancer with tumour Epstein-Barr virus positivity: an international pooled analysis. Gut 63:236–243. https://doi.org/10.1136/gutjnl-2013-304531

    Article  PubMed  Google Scholar 

  19. Park JH, Kim EK, Kim YH, Kim JH, Bae YS, Lee YC, Cheong JH, Noh SH, Kim H (2016) Epstein-Barr virus positivity, not mismatch repair-deficiency, is a favourable risk factor for lymph node metastasis in submucosa-invasive early gastic cancer. Gastric Cancer 19:1041–1051. https://doi.org/10.1007/s10120-015-0565-1

    Article  CAS  PubMed  Google Scholar 

  20. Osumi H, Kawachi H, Yoshio T, Ida S, Yamamoto N, Horiuchi Y, Ishiyama A, Hirasawa T, Tsuchida T, Hiki N, Takeuchi K, Fujisaki J (2019) Epstein-Barr virus status is a promising biomarker for endoscopic resection in early gastric cancer: proposal of a novel therapeutic strategy. J Gastroenterol 54:774–783. https://doi.org/10.1007/s00535-019-01562-0

    Article  PubMed  Google Scholar 

  21. Carneiro F, Fukayama M, Grabsch HI, Yasui W (2019) Gastric adenocarcinoma. In WHO Classification Editorial Board. Digestive system tumours (WHO calssification of tumours series, 5th ed.; vol.1), International Agency for Research on Cancer, Lyon, pp85–95

  22. Watanabe H, Enjoji M, Imai T (1976) Gastric carcinoma with lymphoid stroma. Its morphological characteristics and prognostic correlations. Cancer 38:232–243

    Article  CAS  Google Scholar 

  23. Gonzalez RS, Cates JMM, Revetta F, McMahon LA, Washington K (2017) Gastric carcinomas with lymphoid stroma: categorization and comparison with solid-type colonic carcinomas. Am J Clin Pathol 148:477–484. https://doi.org/10.1093/ajcp/aqx096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakamura S, Ueki T, Yao T, Ueyama T, Tsuneyoshi M (1994) Epstein-Barr virus in gastric carcinoma with lymphoid stroma. Special reference to its detection by the polymerase chain reaction and in situ hybridization in 99 tumors, including a morphologic analysis. Cancer 73:2239–2249

    Article  CAS  Google Scholar 

  25. Lim H, Park YS, Lee JH, Son DH, Ahn JY, Choi KS, Kim DH, Choi KD, Song HJ, Lee GH, Jung HY, Kim JH, Yook JH, Kim BS (2015) Features of gastric carcinoma with lymphoid stroma associated with Epstein-Barr virus. Clin Gastroenterol Hepatol 13:1738–1744.e2. https://doi.org/10.1016/j.cgh.2015.04.015

    Article  PubMed  Google Scholar 

  26. Hissong E, Ramrattan G, Zhang P, Zhou XK, Young G, Klimstra DS, Shia J, Fernandes H, Yantiss RK (2018) Gastric carcinomas with lymphoid stroma: an evaluation of the histopathologic and molecular features. Am J Surg Pathol 42:453–462. https://doi.org/10.1097/PAS.0000000000001018

    Article  PubMed  Google Scholar 

  27. Gullo I, Oliveira P, Athelogou M, Goncalves G, Pinto ML, Carvalho J, Valente A, Pinheiro H, Andrade S, Almeida GM, Huss R, Das K, Tan P, Machado JC, Oliveira C, Carneiro F (2019) New insights into the inflamed tumor immune microenvironment of gastric cancer with lymphoid stroma: from morphology and digital analysis to gene expression. Gastric Cancer 22:77–90. https://doi.org/10.1007/s10120-018-0836-8

    Article  PubMed  Google Scholar 

  28. Gullo I, Carvalho J, Martins D, Lemos D, Monteiro AR, Ferreira M, Das K, Tan P, Oliveira C, Carneiro F, Oliveira P (2018) The transcriptomic landscape of gastric cancer: insights into Epstein-Barr virus infected and microsatellite unstable tumors. Int J Mol Sci:19, E2079. https://doi.org/10.3390/ijms19072079

    Article  Google Scholar 

  29. Shinozaki-Ushiku A, Kunita A, Fukayama M (2015) Update on Epstein-Barr virus and gastric cancer (review). Int J Oncol 46:1421–1434. https://doi.org/10.3892/ijo.2015.2856

    Article  CAS  PubMed  Google Scholar 

  30. Uozaki H, Fukayama M (2008) Epstein-Barr virus associated gastric carcinoma-viral carcinogenesis through epigenetic mechanisms. Int J Clin Exp Pathol 1:198–216

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kenney SC, Mertz JE (2014) Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 26:60–68. https://doi.org/10.1016/j.semcancer.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  32. Kaizaki Y, Sakurai S, Chong JM, Fukayama M (1999) Atrophic gastritis, Epstein-Barr virus infection, and Epstein-Barr virus-associated gastric carcinoma. Gastric Cancer 2:101–108

    Article  Google Scholar 

  33. Hirano A, Yanai H, Shimizu N, Okamoto T, Matsubara Y, Yamamoto K, Okita K (2003) Evaluation of Epstein-Barr virus DNA load in gastric mucosa with chronic atrophic gastritis using a real-time quantitative PCR assay. Int J Gastrointest Cancer 34:87–94

    Article  CAS  Google Scholar 

  34. Imai S, Nishikawa J, Takada K (1998) Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J Virol 72:4371–4378

    Article  CAS  Google Scholar 

  35. Nakayama A, Abe H, Kunita A, Saito R, Kanda T, Yamashita H, Seto Y, Ishikawa S, Fukayama M Viral loads correlate with upregulation of PD-L1 and worse patient prognosis in Epstein-Barr Virus-associated gastric carcinoma. PLoS One 14:e0211358. https://doi.org/10.1371/journal.pone.0211358

    Article  CAS  Google Scholar 

  36. Kanda T, Yajima M, Ikuta K (2019) Epstein-Barr virus strain variation and cancer. Cancer Sci 110:1132–1139. https://doi.org/10.1111/cas.13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corvalan AH, Ruedlinger J, de Mayo T, Polakovicova I, Gonzalez-Hormazabal P, Aguayo F (2019) The phylogeographic diversity of EBV and admixed ancestry in the Americas: another model of disrupted human-pathogen co-evolution. Cancers (Basel) 11:E217. https://doi.org/10.3390/cancers11020217

    Article  CAS  Google Scholar 

  38. Kaneda A, Matsusaka K, Aburatani H, Fukayama M (2012) Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res 72:3445–3450. https://doi.org/10.1158/0008-5472.CAN-11-3919

    Article  CAS  PubMed  Google Scholar 

  39. Matsusaka K, Kaneda A, Nagae G, Ushiku T, Kikuchi Y, Hino R, Uozaki H, Seto Y, Takada K, Aburatani H, Fukayama M (2011) Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res 71:7187–7197. https://doi.org/10.1158/0008-5472.CAN-11-1349

    Article  CAS  PubMed  Google Scholar 

  40. Matsusaka K, Funata S, Fukuyo M, Seto Y, Aburatani H, Fukayama M, Kaneda A (2017) Epstein-Barr virus infection induces genome-wide de novo DNA methylation in non-neoplastic gastric epithelial cells. J Pathol 242:391–399. https://doi.org/10.1002/path.4909

    Article  CAS  PubMed  Google Scholar 

  41. Goldenring JR, Nam KT (2010) Oxyntic atrophy, metaplasia, and gastric cancer. Prog Mol Biol Transl Sci 96:117–131. https://doi.org/10.1016/B978-0-12-381280-3.00005-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Port RJ, Pinheiro-Maia S, Hu C, Arrand JR, Wei W, Young LS, Dawson CW (2013) Epstein-Barr virus induction of the hedgehog signaling pathway imposes a stem cell phenotype on human epithelial cells. J Pathol 231:367–377. https://doi.org/10.1002/path.4245

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu T, Marusawa H, Matsumoto Y, Inuzuka T, Ikeda A, Fujii Y, Minamiguchi S, Miyamoto S, Kou T, Sakai Y, Crabtree JE, Chiba T (2014) Accumulation of somatic mutations in TP53 in gastric epithelium with helicobacter pylori infection. Gastroenterology 147:407–417.e3. https://doi.org/10.1053/j.gastro.2014.04.036

    Article  CAS  PubMed  Google Scholar 

  44. Abe H, Kaneda A, Fukayama M (2015) Epstein-Barr virus associated gastric carcinoma: use of host cell machineries and somatic gene mutations. Pathobiology 82:212–223. https://doi.org/10.1159/000434683

    Article  CAS  PubMed  Google Scholar 

  45. Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A, Ishikawa S, Morikawa T, Nakaya T, Sakatani T, Takada K, Fukayama M (2009) Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res 69:2766–2774. https://doi.org/10.1158/0008-5472.CAN-08-3070

    Article  CAS  PubMed  Google Scholar 

  46. Namba-Fukuyo H, Funata S, Matsusaka K, Fukuyo M, Rahmutulla B, Mano Y, Fukayama M, Aburatani H, Kaneda A (2016) TET2 functions as a resistance factor against DNA methylation acquisition during Epstein-Barr virus infection. Oncotarget 7:81512–81526. https://doi.org/10.18632/oncotarget.13130

    Article  PubMed  PubMed Central  Google Scholar 

  47. Funata S, Matsusaka K, Yamanaka R, Yamamoto S, Okabe A, Fukuyo M, Aburatani H, Fukayama M, Kaneda A (2017) Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection. Oncotarget 8:55265–55279. https://doi.org/10.18632/oncotarget.19423

    Article  PubMed  PubMed Central  Google Scholar 

  48. Birdwell CE, Queen KJ, Kilgore PC, Rollyson P, Trutschl M, Cvek U, Scott RS (2014) Genome-wide DNA methylation as an epigenetic consequence of Epstein-Barr virus infection of immortalized keratinocytes. J Virol 88:11442–11458. https://doi.org/10.1128/JVI.00972-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hatakeyama M (2014) Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 15:306–316. https://doi.org/10.1016/j.chom.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  50. Saju P, Murata-Kamiya N, Hayashi T, Senda Y, Nagase L, Noda S, Matsusaka K, Funata S, Kunita A, Urabe M, Seto Y, Fukayama M, Kaneda A, Hatakeyama M (2016) Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein-Barr virus. Nat Microbiol 1:16026. https://doi.org/10.1038/nmicrobiol.2016.26

    Article  CAS  PubMed  Google Scholar 

  51. Cardenas-Mondragon MG, Torres J, Flores-Luna L, Camorlinga-Ponce M, Carreon-Talavera R, Gomez-Delgado A, Kasamatsu E, Fuentes-Panana EM (2015) Case control study of Epstein Barr virus and Helicobacter pylori serology in Latin American patients with gastric disease. Br J Cancer 112:1866–1873. https://doi.org/10.1038/bjc.2015.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen YC, Sheng J, Trang P, Liu F (2018) Potential application of the CRISPR/Cas9 system against herpes virus infections. Viruses 10:E291. https://doi.org/10.3390/v10060291

    Article  CAS  PubMed  Google Scholar 

  53. van Beek J, zur Hausen A, Snel SN, Berkhof J, Kranenbarg EK, van de Velde CJ, van den Brule AJ, Middeldorp JM, Meijer CJ, Bloemena E (2006) Morphological evidence of an activated cytotoxic T-cell infiltrate in EBV-positive gastric carcinoma preventing lymph node metastases. Am J Surg Pathol 30:59–65

    Article  Google Scholar 

  54. Chiaravalli AM, Feltri M, Bertolini V, Bagnoli E, Furlan D, Cerutti R, Novario R, Capella C (2006) Intratumour T cells, their activation status and survival in gastric carcinomas characterised for microsatellite instability and Epstein-Barr virus infection. Virchows Arch 448:344–353. https://doi.org/10.1007/s00428-005-0066-4

    Article  PubMed  Google Scholar 

  55. Koh J, Ock CY, Kim JW, Nam SK, Kwak Y, Yun S, Ahn SH, Park DJ, Kim HH, Kim WH, Lee HS (2017) Clinicopathologic implications of immune classification by PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in stage II and III gastric cancer patients. Oncotarget 8:26356–26367. https://doi.org/10.18632/oncotarget.15465

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ichimura T, Abe H, Morikawa T, Yamashita H, Ishikawa S, Ushiku T, Seto Y, Fukayama M (2016) Low density of CD204-positive M2-type tumor-associated macrophages in Epstein-Barr virus-associated gastric cancer: a clinicopathologic study with digital image analysis. Hum Pathol 56:74–80. https://doi.org/10.1016/j.humpath.2016.06.002

    Article  PubMed  Google Scholar 

  57. Abe H, Morikawa T, Saito R, Yamashita H, Seto Y, Fukayama M (2016) In Epstein-Barr virus-associated gastric carcinoma a high density of CD66b-positive tumor-associated neutrophils is associated with intestinal-type histology and low frequency of lymph node metastasis. Virchows Arch 468:539–548. https://doi.org/10.1007/s00428-016-1915-z

    Article  CAS  PubMed  Google Scholar 

  58. Strong MJ, Xu G, Coco J, Baribault C, Vinay DS, Lacey MR, Strong AL, Lehman TA, Seddon MB, Lin Z, Concha M, Baddoo M, Ferris M, Swan KF, Sullivan DE, Burow ME, Taylor CM, Flemington EK (2013) Differences in gastric carcinoma microenvironment stratify according to EBV infection intensity: implications for possible immune adjuvant therapy. PLoS Pathog 9:e1003341. https://doi.org/10.1371/journal.ppat.1003341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu S, Wang LJ, Lombardo K, Kwak Y, Kim WH, Resnick MB (2019) Expression of indoleamine 2, 3-dioxygenase 1 (IDO1) and tryptophanyl-tRNA synthetase (WARS) in gastric cancer molecular subtypes. Appl Immunohistochem Mol Morphol. https://doi.org/10.1097/PAI.0000000000000761

  60. Zhang NN, Chen JN, Xiao L, Tang F, Zhang ZG, Zhang YW, Feng ZY, Jiang Y, Shao CK (2015) Accumulation mechanisms of CD4(+)CD25(+)FOXP3(+) regulatory T cells in EBV-associated gastric carcinoma. Sci Rep 5:18057. https://doi.org/10.1038/srep18057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Derks S, Liao X, Chiaravalli AM, Xu X, Camargo MC, Solcia E, Sessa F, Fleitas T, Freeman GJ, Rodig SJ, Rabkin CS, Bass AJ (2016) Abundant PD-L1 expression in Epstein-Barr virus-infected gastric cancers. Oncotarget 7:32925–32932. https://doi.org/10.18632/oncotarget.9076

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cho J, Chang YH, Heo YJ, Kim S, Kim NK, Park JO, Kang WK, Lee J, Kim KM (2018) Four distinct immune microenvironment subtypes in gastric adenocarcinoma with special reference to microsatellite instability. ESMO Open 3:e000326. https://doi.org/10.1136/esmoopen-2018-000326

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kawazoe A, Shitara K, Kuboki Y, Bando H, Kojima T, Yoshino T, Ohtsu A, Ochiai A, Togashi Y, Nishikawa H, Doi T, Kuwata T Clinicopathological features of 22C3 PD-L1 expression with mismatch repair, Epstein-Barr virus status, and cancer genome alterations in metastatic gastric cancer. Gastric Cancer 22:69–76. https://doi.org/10.1007/s10120-018-0843-9

    Article  Google Scholar 

  64. Saito R, Abe H, Kunita A, Yamashita H, Seto Y, Fukayama M (2017) Overexpression and gene amplification of PD-L1 in cancer cells and PD-L1(+) immune cells in Epstein-Barr virus-associated gastric cancer: the prognostic implications. Mod Pathol 30:427–443. https://doi.org/10.1038/modpathol.2016.202

    Article  CAS  PubMed  Google Scholar 

  65. Taieb J, Moehler M, Boku N, Ajani JA, Yanez Ruiz E, Ryu MH, Guenther S, Chand V, Bang YJ (2018) Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: current status and future perspectives. Cancer Treat Rev 66:104–113. https://doi.org/10.1016/j.ctrv.2018.04.004

    Article  CAS  PubMed  Google Scholar 

  66. Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, Ms MJ, Shah S, Hanks D, Wang J, Lunceford J, Savage MJ, Juco J, Emancipator K (2019) Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med 143:330–337. https://doi.org/10.5858/arpa.2018-0043-OA

    Article  PubMed  Google Scholar 

  67. Panda A, Mehnert JM, Hirshfield KM, Riedlinger G, Damare S, Saunders T, Kane M, Sokol L, Stein MN, Poplin E, Rodriguez-Rodriguez L, Silk AW, Aisner J, Chan N, Malhotra J, Frankel M, Kaufman HL, Ali S, Ross JS, White EP, Bhanot G, Ganesan S (2018) Immune activation and benefit from avelumab in EBV-positive gastric cancer. J Natl Cancer Inst 110:316–320. https://doi.org/10.1093/jnci/djx213

    Article  CAS  PubMed  Google Scholar 

  68. Abe H, Saito R, Ichimura T, Iwasaki A, Yamazawa S, Shinozaki-Ushiku A, Morikawa T, Ushiku T, Yamashita H, Seto Y, Fukayama M (2018) CD47 expression in Epstein-Barr virus-associated gastric carcinoma: coexistence with tumor immunity lowering the ratio of CD8(+)/Foxp3(+) T cells. Virchows Arch 472:643–651. https://doi.org/10.1007/s00428-018-2332-2

    Article  CAS  PubMed  Google Scholar 

  69. Murata Y, Saito Y, Kotani T, Matozaki T (2018) CD47-signal regulatory protein signaling system and its application to cancer immunotherapy. Cancer Sci 109:2349–2357. https://doi.org/10.1111/cas.13663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Polakovicova I, Jerez S, Wichmann IA, Sandoval-Borquez A, Carrasco-Veliz N, Corvalan AH (2018) Role of microRNAs and exosomes in Helicobacter pylori and Epstein-Barr virus associated gastric cancers. Front Microbiol 9:636. https://doi.org/10.3389/fmicb.2018.00636

    Article  PubMed  PubMed Central  Google Scholar 

  71. Marquitz AR, Mathur A, Edwards RH, Raab-Traub N (2015) Host gene expression is regulated by two types of noncoding RNAs transcribed from the Epstein-Barr virus BamHI a rightward transcript region. J Virol 89:11256–11268. https://doi.org/10.1128/JVI.01492-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Toptan T, Abere B, Nalesnik MA, Swerdlow SH, Ranganathan S, Lee N, Shair KH, Moore PS, Chang Y (2018) Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci U S A 115:E8737–E8745. https://doi.org/10.1073/pnas.1811728115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ungerleider N, Concha M, Lin Z, Roberts C, Wang X, Cao S, Baddoo M, Moss WN, Yu Y, Seddon M, Lehman T, Tibbetts S, Renne R, Dong Y, Flemington EK (2018) The Epstein Barr virus circRNAome. PLoS Pathog 14:e1007206. https://doi.org/10.1371/journal.ppat.1007206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shoda K, Ichikawa D, Fujita Y, Masuda K, Hiramoto H, Hamada J, Arita T, Konishi H, Kosuga T, Komatsu S, Shiozaki A, Okamoto K, Imoto I, Otsuji E (2017) Clinical utility of circulating cell-free Epstein-Barr virus DNA in patients with gastric cancer. Oncotarget 8:28796–28804. https://doi.org/10.18632/oncotarget.15675

    Article  PubMed  PubMed Central  Google Scholar 

  75. Nishikawa J, Iizasa H, Yoshiyama H, Shimokuri K, Kobayashi Y, Sasaki S, Nakamura M, Yanai H, Sakai K, Suehiro Y, Yamasaki T, Sakaida I (2018) Clinical importance of Epstein-Barr virus-associated gastric cancer. Cancers (Basel) 10:E167. https://doi.org/10.3390/cancers10060167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Gillian Campbell, PhD, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. We appreciate Mr. Francesco De Logu (University of Florence) for the beautiful and informative redrawing of Fig. 2.

Funding

This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (26253021 to M.F., 26860232 and 16 K19074 to H.A.) and from the Core Research for Evolutionary Science and Technology program from the Japan Science and Technology Agency to A.K. and M.F.

Author information

Authors and Affiliations

Authors

Contributions

All authors (MF, HA, AKu, AS-U, KM, TU and AK) contributed to the idea of the review. The first draft was written by MF, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Masashi Fukayama.

Ethics declarations

This article does not contain any studies with human or animal subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical responsibilities of authors section

Virchows Archiv conforms to the ICMJE recommendation for qualification of authorship. The ICMJE recommends that authorship be based on the following four criteria:

  • Substantial contributions to the conception or design of the work or the acquisition, analysis, or interpretation of data for the work

  • Drafting the work or revising it critically for important intellectual content

  • Final approval of the version to be published

  • Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All individuals listed as co-authors of the manuscript must qualify for every one of the four criteria listed above. Should an individual’s contributions to the manuscript meet three of the criteria or fewer, then they should not be listed as a co-author on the manuscript; instead, their contributions should be acknowledged in the Acknowledgements section of the manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukayama, M., Abe, H., Kunita, A. et al. Thirty years of Epstein-Barr virus-associated gastric carcinoma. Virchows Arch 476, 353–365 (2020). https://doi.org/10.1007/s00428-019-02724-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-019-02724-4

Keywords

Navigation