Akbari Chermahini, S., & Hommel, B. (2010). The (b) link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458–465.
Google Scholar
Al-Yahya, E., Dawes, H., Smith, L., Dennis, A., Howells, K., & Cockburn, J. (2011). Cognitive motor interference while walking: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 715–728.
Google Scholar
Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., Hodges, D. A., Koschutnig, K., & Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98.
PubMed
PubMed Central
Google Scholar
Blin, O., Masson, G., Azulay, J., Fondarai, J., & Serratrice, G. (1990). Apomorphine-induced blinking and yawning in healthy volunteers. British Journal of Clinical Pharmacology, 30(5), 769–773.
PubMed
PubMed Central
Google Scholar
Bologna, M., Fasano, A., Modugno, N., Fabbrini, G., & Berardelli, A. (2012). Effects of subthalamic nucleus deep brain stimulation and L-DOPA on blinking in Parkinson’s disease. Experimental Neurology, 235(1), 265–272.
PubMed
Google Scholar
Bonneh, Y. S., Adini, Y., & Polat, U. (2016). Contrast sensitivity revealed by spontaneous eyeblinks: Evidence for a common mechanism of oculomotor inhibition. Journal of Vision, 16(7), 1–1.
PubMed
Google Scholar
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.
PubMed
Google Scholar
Brych, M., & Händel, B. (2020). Disentangling top-down and bottom-up influences on blinks in the visual and auditory domain. International Journal of Psychophysiology, 158, 400–410.
PubMed
Google Scholar
Brych, M., Murali, S., & Händel, B. (2021). How the motor aspect of speaking influences the blink rate. PLoS One, 16(10), e0258322. https://doi.org/10.1371/journal.pone.0258322
Article
PubMed
PubMed Central
Google Scholar
Brych, M., Murali, S., & Händel, B. (2021). The role of blinks, microsaccades and their retinal consequences in bistable motion perception. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2021.647256 Original Research.
Article
PubMed
PubMed Central
Google Scholar
Burr, D. (2005). Vision: In the blink of an eye. Current Biology, 15(14), R554–R556.
PubMed
Google Scholar
Cao, L., & Händel, B. (2019). Walking enhances peripheral visual processing in humans. PLoS Biology, 17(10), e3000511.
PubMed
PubMed Central
Google Scholar
Cao, L., Chen, X., & Haendel, B. F. (2020). Overground walking decreases alpha activity and entrains eye movements in humans. Frontiers in Human Neuroscience, 14, 561755.
PubMed
PubMed Central
Google Scholar
Damiano, C., & Walther, D. B. (2019). Distinct roles of eye movements during memory encoding and retrieval. Cognition, 184, 119–129.
PubMed
Google Scholar
Dang, L. C., Donde, A., Madison, C., O’Neil, J. P., & Jagust, W. J. (2012). Striatal dopamine influences the default mode network to affect shifting between object features. Journal of Cognitive Neuroscience, 24(9), 1960–1970.
PubMed
PubMed Central
Google Scholar
Dang, L. C., Samanez-Larkin, G. R., Castrellon, J. J., Perkins, S. F., Cowan, R. L., Newhouse, P. A., & Zald, D. H. (2017). Spontaneous eye blink rate (EBR) is uncorrelated with dopamine D2 receptor availability and unmodulated by dopamine agonism in healthy adults. eneuro, 4(5).
Doughty, M. J. (2001). Consideration of three types of spontaneous eyeblink activity in normal humans: During reading and video display terminal use, in primary gaze, and while in conversation. Optometry and Vision Science, 78(10), 712–725.
PubMed
Google Scholar
Dykes, M., & McGhie, A. (1976). A comparative study of attentional strategies of schizophrenic and highly creative normal subjects. The British Journal of Psychiatry, 128(1), 50–56.
PubMed
Google Scholar
Fogarty, C., & Stern, J. A. (1989). Eye movements and blinks: Their relationship to higher cognitive processes. International Journal of Psychophysiology, 8(1), 35–42.
PubMed
Google Scholar
Friedman, R. S., Fishbach, A., Förster, J., & Werth, L. (2003). Attentional priming effects on creativity. Creativity Research Journal, 15(2–3), 277–286.
Google Scholar
Goldstein, R., Bauer, L. O., & Stern, J. A. (1992). Effect of task difficulty and interstimulus interval on blink parameters. International Journal of Psychophysiology, 13(2), 111–117.
PubMed
Google Scholar
Guilford, J. P. (1967). The nature of human intelligence.
Hommel, B. (2015). Between persistence and flexibility: the Yin and Yang of action control. Advances in motivation science (Vol. 2, pp. 33–67). Elsevier.
Google Scholar
Johansson, R., & Johansson, M. (2014). Look here, eye movements play a functional role in memory retrieval. Psychological Science, 25(1), 236–242.
PubMed
Google Scholar
Johansson, R., Holsanova, J., Dewhurst, R., & Holmqvist, K. (2012). Eye movements during scene recollection have a functional role, but they are not reinstatements of those produced during encoding. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1289.
PubMed
Google Scholar
Kaminer, J., Powers, A. S., Horn, K. G., Hui, C., & Evinger, C. (2011). Characterizing the spontaneous blink generator: An animal model. Journal of Neuroscience, 31(31), 11256–11267.
PubMed
Google Scholar
Karson, C. N. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain, 106(3), 643–653.
PubMed
Google Scholar
Karson, C. N., Burns, R. S., LeWitt, P. A., Foster, N. L., & Newman, R. P. (1984). Blink rates and disorders of movement. Neurology, 34(5), 677–677.
PubMed
Google Scholar
Kassner, M., Patera, W., & Bulling, A. (2014). Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction. Proceedings of the 2014 ACM international joint conference on pervasive and ubiquitous computing: Adjunct publication.
Kleiner, M., Brainard, D., & Pelli, D. (2007). What's new in Psychtoolbox-3?
Kühn, S., Ritter, S. M., Müller, B. C., Van Baaren, R. B., Brass, M., & Dijksterhuis, A. (2014). The importance of the default mode network in creativity—a structural MRI study. The Journal of Creative Behavior, 48(2), 152–163.
Google Scholar
Kulisevsky, J., Pagonabarraga, J., & Martinez-Corral, M. (2009). Changes in artistic style and behaviour in Parkinson’s disease: Dopamine and creativity. Journal of Neurology, 256(5), 816–819.
PubMed
Google Scholar
Kuo, C.-Y., & Yeh, Y.-Y. (2016). Sensorimotor-conceptual integration in free walking enhances divergent thinking for young and older adults. Frontiers in Psychology, 7, 1580.
PubMed
PubMed Central
Google Scholar
Lakoff, G., & Johnson, M. (1980). Metaphor we live by. Chicago/London.
Lenoble, Q., Janssen, S. M., & El Haj, M. (2019). Don’t stare, unless you don’t want to remember: Maintaining fixation compromises autobiographical memory retrieval. Memory, 27(2), 231–238.
PubMed
Google Scholar
Leung, A.K.-Y., Kim, S., Polman, E., Ong, L. S., Qiu, L., Goncalo, J. A., & Sanchez-Burks, J. (2012). Embodied metaphors and creative “acts.” Psychological Science, 23(5), 502–509.
PubMed
Google Scholar
Madore, K. P., Addis, D. R., & Schacter, D. L. (2015). Creativity and memory: Effects of an episodic-specificity induction on divergent thinking. Psychological Science, 26(9), 1461–1468.
PubMed
Google Scholar
Martindale, C. (1999). Biological bases of creativity.
Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220.
PubMed
Google Scholar
Memmert, D. (2007). Can creativity be improved by an attention-broadening training program? An exploratory study focusing on team sports. Creativity Research Journal, 19(2–3), 281–291.
Google Scholar
Mendelsohn, G. A., & Griswold, B. B. (1964). Differential use of incidental stimuli in problem solving as a function of creativity. The Journal of Abnormal and Social Psychology, 68(4), 431.
Google Scholar
Mendelsohn, G. A., & Griswold, B. B. (1966). Assessed creative potential, vocabulary level, and sex as predictors of the use of incidental cues in verbal problem solving. Journal of Personality and Social Psychology, 4(4), 423.
PubMed
Google Scholar
Moraru, A., Memmert, D., & van der Kamp, J. (2016). Motor creativity: The roles of attention breadth and working memory in a divergent doing task. Journal of Cognitive Psychology, 28(7), 856–867.
Google Scholar
Murali, S., & Händel, B. (2021). The latency of spontaneous eye blinks marks relevant visual and auditory information processing. Journal of Vision, 21(6), 7–7. https://doi.org/10.1167/jov.21.6.7
Article
PubMed
PubMed Central
Google Scholar
Nagano-Saito, A., Liu, J., Doyon, J., & Dagher, A. (2009). Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neuroscience Letters, 458(1), 1–5.
PubMed
Google Scholar
Nakano, T., Kato, M., Morito, Y., Itoi, S., & Kitazawa, S. (2013). Blink-related momentary activation of the default mode network while viewing videos. Proceedings of the National Academy of Sciences, 110(2), 702–706.
Google Scholar
Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–383.
Google Scholar
Nijstad, B., De Dreu, C., Rietzschel, E., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21, 34–77. https://doi.org/10.1080/10463281003765323
Article
Google Scholar
Oh, J., Jeong, S.-Y., & Jeong, J. (2012). The timing and temporal patterns of eye blinking are dynamically modulated by attention. Human Movement Science, 31(6), 1353–1365.
PubMed
Google Scholar
Oppezzo, M., & Schwartz, D. L. (2014). Give your ideas some legs: The positive effect of walking on creative thinking. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 1142.
PubMed
Google Scholar
Ottemiller, D. D., Elliott, C. S., & Giovannetti, T. (2014). Creativity, overinclusion, and everyday tasks. Creativity Research Journal, 26(3), 289–296.
Google Scholar
Patel, P., Lamar, M., & Bhatt, T. (2014). Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking. Neuroscience, 260, 140–148.
PubMed
Google Scholar
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.
PubMed
Google Scholar
Radel, R., Davranche, K., Fournier, M., & Dietrich, A. (2015). The role of (dis) inhibition in creativity: Decreased inhibition improves idea generation. Cognition, 134, 110–120.
PubMed
Google Scholar
Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24(1), 66–75.
Google Scholar
Salvi, C., & Bowden, E. M. (2016). Looking for creativity: Where do we look when we look for new ideas? Frontiers in Psychology, 7, 161.
PubMed
PubMed Central
Google Scholar
Sescousse, G., Ligneul, R., van Holst, R. J., Janssen, L. K., de Boer, F., Janssen, M., Berry, A. S., Jagust, W. J., & Cools, R. (2018). Spontaneous eye blink rate and dopamine synthesis capacity: Preliminary evidence for an absence of positive correlation. European Journal of Neuroscience, 47(9), 1081–1086.
Google Scholar
Siegle, G. J., Ichikawa, N., & Steinhauer, S. (2008). Blink before and after you think: Blinks occur prior to and following cognitive load indexed by pupillary responses. Psychophysiology, 45(5), 679–687.
PubMed
Google Scholar
Slepian, M. L., & Ambady, N. (2012). Fluid movement and creativity. Journal of Experimental Psychology: General, 141(4), 625.
Google Scholar
Slepian, M. L., & Ambady, N. (2014). Simulating sensorimotor metaphors: Novel metaphors influence sensory judgments. Cognition, 130(3), 309–314.
PubMed
Google Scholar
Strakowski, S. M., & Sax, K. W. (1998). Progressive behavioral response to repeated d-amphetamine challenge: Further evidence for sensitization in humans. Biological Psychiatry, 44(11), 1171–1177.
PubMed
Google Scholar
Strakowski, S. M., Sax, K. W., Setters, M. J., & Keck, P. E., Jr. (1996). Enhanced response to repeated d-amphetamine challenge: Evidence for behavioral sensitization in humans. Biological Psychiatry, 40(9), 872–880.
PubMed
Google Scholar
Taylor, J., Elsworth, J., Lawrence, M., Sladek, J., Jr., Roth, R., & Redmond, D., Jr. (1999). Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Experimental Neurology, 158(1), 214–220.
PubMed
Google Scholar
Ueda, Y., Tominaga, A., Kajimura, S., & Nomura, M. (2016). Spontaneous eye blinks during creative task correlate with divergent processing. Psychological Research Psychologische Forschung, 80(4), 652–659.
PubMed
Google Scholar
von Cramon, D., & Schuri, U. (1980). Blink frequency and speech motor activity. Neuropsychologia, 18(4–5), 603–606.
Google Scholar
Wascher, E., Heppner, H., Möckel, T., Kobald, S. O., & Getzmann, S. (2015). Eye-blinks in choice response tasks uncover hidden aspects of information processing. EXCLI Journal, 14, 1207.
PubMed
PubMed Central
Google Scholar
Zabelina, D. L., Colzato, L., Beeman, M., & Hommel, B. (2016). Dopamine and the creative mind: Individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PLoS ONE, 11(1), e0146768.
PubMed
PubMed Central
Google Scholar
Zhang, W., Sjoerds, Z., & Hommel, B. (2020). Metacontrol of human creativity: The neurocognitive mechanisms of convergent and divergent thinking. NeuroImage, 210, 116572.
PubMed
Google Scholar
Zhou, Y., Zhang, Y., Hommel, B., & Zhang, H. (2017). The impact of bodily states on divergent thinking: Evidence for a control-depletion account. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2017.01546 Original Research.
Article
PubMed
PubMed Central
Google Scholar