Akhtar, N., & Tomasello, M. (1996). Two-year-olds learn words for absent objects and actions. British Journal of Developmental Psychology, 14(1), 79–93. https://doi.org/10.1111/j.2044-835X.1996.tb00695.x
Article
Google Scholar
Amir, Y., Harel, M., & Malach, R. (1993). Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. Journal of Comparative Neurology, 334(1), 19–46. https://doi.org/10.1002/cne.903340103
Article
PubMed
Google Scholar
Andrews, M., Vigliocco, G., & Vinson, D. (2009). Integrating experiential and distributional data to learn semantic representations. Psychological Review, 116(3), 463.
PubMed
Google Scholar
Arikuni, T., Watanabe, K., & Kubota, K. (1988). Connections of area 8 with area 6 in the brain of the macaque monkey. Journal of Comparative Neurology, 277(1), 21–40. https://doi.org/10.1002/cne.902770103
Article
PubMed
Google Scholar
Artola, A., Bröcher, S., & Singer, W. (1990). Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature, 347(6288), 69–72. https://doi.org/10.1038/347069a0
Article
PubMed
Google Scholar
Artola, A., & Singer, W. (1993). Long-Term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neurosciences, 16, 480–487.
PubMed
Google Scholar
Au, T. K., Dapretto, M., & Song, Y.-K. (1994). Input vs constraints: early word acquisition in Korean and English. Journal of Memory and Language, 33(5), 567–582. https://doi.org/10.1006/jmla.1994.1027
Article
Google Scholar
Baker, G. P., & Hacker, P. M. S. (2008). Wittgenstein: understanding and meaning. Essays (Vol. 1). John Wiley & Sons.
Google Scholar
Baldwin, D. A. (1995). Understanding the link between joint attention and language. In C. Moore & P. J. Dunham (Eds.), Joint attention: its origins and role in development (pp. 131–158). Lawrence Erlbaum.
Google Scholar
Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. Grounding Cognition: The Role of Perception and Action in Memory, Language, and Thought, 129–163.
Bassano, D. (2000). Early development of nouns and verbs in French: exploring the interface between lexicon and grammar. Journal of Child Language, 27(3), 521–559.
PubMed
Google Scholar
Bauer, R. H., & Fuster, J. M. (1978). The effect of ambient illumination on delayed-matching and delayed-response deficits from cooling dorsolateral prefrontal cortex. Behavioral Biology, 22(1), 60–66. https://doi.org/10.1016/S0091-6773(78)92019-9
Article
PubMed
Google Scholar
Bauer, R. H., & Jones, C. N. (1976). Feedback training of 36–45 Hz EEG activity in the visual cortex and hippocampus of cats: evidence for sensory and motor involvement. Physiology & Behavior, 17, 885–890.
Google Scholar
Behl-Chadha, G. (1996). Basic-level and superordinate-like categorical representations in early infancy. Cognition, 60(2), 105–141. https://doi.org/10.1016/0010-0277(96)00706-8
Article
PubMed
Google Scholar
Bergelson, E., & Swingley, D. (2013). The acquisition of abstract words by young infants. Cognition, 127(3), 391–397.
PubMed
PubMed Central
Google Scholar
Bibbig, A., Wennekers, T., & Palm, G. (1995). A neural network model of the cortico-hippocampal interplay and the representation of contexts. Behavioural Brain Research, 66(1), 169–175.
PubMed
Google Scholar
Blondin Massé, A., Chicoisne, G., Gargouri, Y., Harnad, S., Picard, O., & Marcotte, O. (2008). How is meaning grounded in dictionary definitions? arXiv:0806.3710.
Bomba, P. C., & Siqueland, E. R. (1983). The nature and structure of infant form categories. Journal of Experimental Child Psychology, 35(2), 294–328. https://doi.org/10.1016/0022-0965(83)90085-1
Article
Google Scholar
Borghi, A. M., & Zarcone, E. (2016). Grounding abstractness: abstract concepts and the activation of the mouth. Frontiers in Psychology, 7, 1498.
PubMed
PubMed Central
Google Scholar
Bornstein, M. H., & Mash, C. (2010). Experience-based and on-line categorization of objects in early infancy. Child Development, 81(3), 884–897.
PubMed
PubMed Central
Google Scholar
Braitenberg, V. (1978). Cell assemblies in the cerebral cortex. In R. Heim & G. Palm (Eds.), Theoretical approaches to complex systems (Vol. 21) (pp. 171–188). Springer.
Google Scholar
Braitenberg, V., & Schüz, A. (1998). Cortex: Statistics and geometry of neuronal connectivity (pp. 135–137). Springer.
Google Scholar
Bressler, S. L., Coppola, R., & Nakamura, R. (1993). Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature, 366(6451), 153–156. https://doi.org/10.1038/366153a0
Article
PubMed
Google Scholar
Cangelosi, A., Greco, A., & Harnad, S. (2002). Symbol grounding and the symbolic theft hypothesis. In: simulating the evolution of language (pp. 191–210). Springer.
Google Scholar
Cangelosi, A., & Riga, T. (2006). An embodied model for sensorimotor grounding and grounding transfer: experiments with epigenetic robots. Cognitive Science, 30(4), 673–689. https://doi.org/10.1207/s15516709cog0000_72
Article
PubMed
Google Scholar
Cangelosi, A., & Stramandinoli, F. (2018). A review of abstract concept learning in embodied agents and robots. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170131. https://doi.org/10.1098/rstb.2017.0131
Article
Google Scholar
Catani, M., Jones, D. K., Donato, R., & Ffytche, D. H. (2003). Occipito-temporal connections in the human brain. Brain, 126(9), 2093–2107. https://doi.org/10.1093/brain/awg203
Article
PubMed
Google Scholar
Catani, M., Jones, D. K., & Ffytche, D. H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8–16. https://doi.org/10.1002/ana.20319
Article
PubMed
Google Scholar
Chafee, M. V., & Goldman-Rakic, P. S. (2000). Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. Journal of Neurophysiology, 83(3), 1550–1566.
PubMed
Google Scholar
Connors, B. W., Gutnick, M. J., & Prince, D. A. (1982). Electrophysiological properties of neocortical neurons in vitro. Journal of Neurophysiology, 48(6), 1302–1320.
PubMed
Google Scholar
Cook, R. G., & Smith, J. D. (2006). Stages of abstraction and exemplar memorization in pigeon category learning. Psychological Science, 17(12), 1059–1067. https://doi.org/10.1111/j.1467-9280.2006.01833.x
Article
PubMed
Google Scholar
Davis, C. P., & Yee, E. (2021). Building semantic memory from embodied and distributional language experience. Wiley Interdisciplinary Reviews: Cognitive Science, 12(5), e1555. https://doi.org/10.1002/wcs.1555
Article
PubMed
Google Scholar
Davis, C. P., Altmann, G. T. M., & Yee, E. (2020). Situational systematicity: a role for schema in understanding the differences between abstract and concrete concepts. Cognitive Neuropsychology, 37(1–2), 142–153. https://doi.org/10.1080/02643294.2019.1710124
Article
PubMed
Google Scholar
Deacon, T. W. (1992). Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Research, 573(1), 8–26. https://doi.org/10.1016/0006-8993(92)90109-M
Article
PubMed
Google Scholar
Distler, C., Boussaoud, D., Desimone, R., & Ungerleider, L. G. (1993). Cortical connections of inferior temporal area TEO in macaque monkeys. The Journal of Comparative Neurology, 334(1), 125–150. https://doi.org/10.1002/cne.903340111
Article
PubMed
Google Scholar
Douglas, R. J., & Martin, K. A. C. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27(1), 419–451. https://doi.org/10.1146/annurev.neuro.27.070203.144152
Article
PubMed
Google Scholar
Dove, G., Barca, L., Tummolini, L., & Borghi, A. M. (2020). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. https://doi.org/10.1007/s00426-020-01438-6
Article
PubMed
Google Scholar
Dove, G. (2018). Language as a disruptive technology: abstract concepts, embodiment and the flexible mind. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170135.
Google Scholar
Dreyer, F. R., & Pulvermüller, F. (2018). Abstract semantics in the motor system?—an event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning. Cortex, 100, 52–70. https://doi.org/10.1016/j.cortex.2017.10.021
Article
PubMed
Google Scholar
Dum, R. P., & Strick, P. L. (2002). Motor areas in the frontal lobe of the primate. Physiology & Behavior, 77(4), 677–682.
Google Scholar
Dum, R. P., & Strick, P. L. (2005). Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. Journal of Neuroscience, 25, 1375–1386. https://doi.org/10.1523/JNEUROSCI.3902-04.2005
Article
PubMed
Google Scholar
Dummett, M. (1981). Frege: philosophy of language. Harvard University Press.
Google Scholar
Duncan, J. (1996). Competitive brain systems in selective attention. International Journal of Psychology, 31(3–4), 3343–3343.
Google Scholar
Duncan, J. (2006). EPS Mid-Career award 2004: brain mechanisms of attention. Quarterly Journal of Experimental Psychology, 59(1), 2–27. https://doi.org/10.1080/17470210500260674
Article
Google Scholar
Eacott, M. J., & Gaffan, D. (1992). Inferotemporal-frontal disconnection: the uncinate fascicle and visual associative learning in monkeys. European Journal of Neuroscience, 4(12), 1320–1332. https://doi.org/10.1111/j.1460-9568.1992.tb00157.x
Article
PubMed
Google Scholar
Eggert, J., & van Hemmen, J. L. (2000). Unifying framework for neuronal assembly dynamics. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 61(2), 1855–1874. https://doi.org/10.1103/PhysRevE.61.1855
Article
PubMed
Google Scholar
Finnie, P. S. B., & Nader, K. (2012). The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neuroscience and Biobehavioral Reviews, 36(7), 1667–1707. https://doi.org/10.1016/j.neubiorev.2012.03.008
Article
PubMed
Google Scholar
Frege, G. (1892). Über Sinn und Bedeutung. Zeitschrift Für Philosophie Und Philosophische Kritik, 100, 25–50.
Google Scholar
Fuster, J. M., Bauer, R. H., & Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Research, 330, 299–307.
PubMed
Google Scholar
Fuster, J. M., & Jervey, J. P. (1981). Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science (new York), 212(4497), 952–955. https://doi.org/10.1126/science.7233192
Article
Google Scholar
Garagnani, M., Lucchese, G., Tomasello, R., Wennekers, T., & Pulvermüller, F. (2017). A spiking neurocomputational model of high-frequency oscillatory brain responses to words and pseudowords. Frontiers in Computational Neuroscience, 10, 145.
PubMed
PubMed Central
Google Scholar
Garagnani, M., & Pulvermüller, F. (2011). From sounds to words: a neurocomputational model of adaptation, inhibition and memory processes in auditory change detection. NeuroImage, 54(1), 170–181. https://doi.org/10.1016/j.neuroimage.2010.08.031
Article
PubMed
Google Scholar
Garagnani, M., & Pulvermüller, F. (2016). Conceptual grounding of language in action and perception: a neurocomputational model of the emergence of category specificity and semantic hubs. European Journal of Neuroscience, 43(6), 721–737. https://doi.org/10.1111/ejn.13145
Article
PubMed
Google Scholar
Garagnani, M., Wennekers, T., & Pulvermüller, F. (2007). A neuronal model of the language cortex. Neurocomputing, 70(10–12), 1914–1919. https://doi.org/10.1016/j.neucom.2006.10.076
Article
Google Scholar
Garagnani, M., Wennekers, T., & Pulvermüller, F. (2008). A neuroanatomically grounded Hebbian-learning model of attention–language interactions in the human brain. European Journal of Neuroscience, 27(2), 492–513.
PubMed
Google Scholar
Garagnani, M., Wennekers, T., & Pulvermüller, F. (2009). Recruitment and consolidation of cell assemblies for words by way of hebbian learning and competition in a multi-layer neural network. Cognitive Computation, 1(2), 160–176. https://doi.org/10.1007/s12559-009-9011-1
Article
PubMed
PubMed Central
Google Scholar
Gebauer, G. (2013). Wie können wir über Emotionen sprechen. Emotion Und Sprache.
Gentner, D., & Boroditsky, L. (2001). Individuation, relativity, and early word learning. Language Acquisition and Conceptual Development, 3, 215–256.
Google Scholar
Gierhan, S. M. E. (2013). Connections for auditory language in the human brain. Brain and Language, 127(2), 205–221. https://doi.org/10.1016/j.bandl.2012.11.002
Article
PubMed
Google Scholar
Glenberg, A. M., & Robertson, D. A. (2000). Symbol grounding and meaning: a comparison of high-dimensional and embodied theories of meaning. Journal of Memory and Language, 43(3), 379–401.
Google Scholar
Granito, C., Scorolli, C., & Borghi, A. M. (2015). Naming a lego world. The role of language in the acquisition of abstract concepts. PLoS ONE, 10(1), e0114615. https://doi.org/10.1371/journal.pone.0114615
Article
PubMed
PubMed Central
Google Scholar
Günther, F., Nguyen, T., Chen, L., Dudschig, C., Kaup, B., & Glenberg, A. M. (2020a). Immediate sensorimotor grounding of novel concepts learned from language alone. Journal of Memory and Language, 115, 104172. https://doi.org/10.1016/j.jml.2020.104172
Article
Google Scholar
Günther, F., Petilli, M. A., Vergallito, A., & Marelli, M. (2020b). Images of the unseen: extrapolating visual representations for abstract and concrete words in a data-driven computational model. Psychological Research Psychologische Forschung. https://doi.org/10.1007/s00426-020-01429-7
Article
PubMed
Google Scholar
Guye, M., Parker, G. J. M., Symms, M., Boulby, P., Wheeler-Kingshott, C. A. M., Salek-Haddadi, A., Barker, G. J., & Duncan, J. S. (2003). Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. NeuroImage, 19(4), 1349–1360. https://doi.org/10.1016/S1053-8119(03)00165-4
Article
PubMed
Google Scholar
Hale, S. C. (1988). Spacetime and the abstract/concrete distinction. Philosophical Studies, 53(1), 85–102.
Google Scholar
Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1–3), 335–346. https://doi.org/10.1016/0167-2789(90)90087-6
Article
Google Scholar
Harpaintner, M., Sim, E.-J., Trumpp, N. M., Ulrich, M., & Kiefer, M. (2020). The grounding of abstract concepts in the motor and visual system: an fMRI study. Cortex, 124, 1–22.
PubMed
Google Scholar
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., & Smith, N. J. (2020). Array programming with NumPy. Nature, 585(7825), 357–362.
PubMed
PubMed Central
Google Scholar
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. IEEE Annals of the History of Computing, 9(03), 90–95.
Google Scholar
Kaas, J. H. (1997). Topographic maps are fundamental to sensory processing. Brain Research Bulletin, 44(2), 107–112. https://doi.org/10.1016/S0361-9230(97)00094-4
Article
PubMed
Google Scholar
Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11793–11799. https://doi.org/10.1073/pnas.97.22.11793
Article
PubMed
PubMed Central
Google Scholar
Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science. McGraw-Hill.
Google Scholar
Kauschke, C., & Hofmeister, C. (2002). Early lexical development in German: a study on vocabulary growth and vocabulary composition during the second and third year of life. Journal of Child Language, 29(4), 735.
PubMed
Google Scholar
Kauschke, C., Lee, H.-W., & Pae, S. (2007). Similarities and variation in noun and verb acquisition: a crosslinguistic study of children learning German, Korean, and Turkish. Language and Cognitive Processes, 22(7), 1045–1072. https://doi.org/10.1080/01690960701307348
Article
Google Scholar
Kiefer, M., & Harpaintner, M. (2020). Varieties of abstract concepts and their grounding in perception or action. Open Psychology, 2(1), 119–137. https://doi.org/10.1515/psych-2020-0104
Article
Google Scholar
Kintsch, W. (1974). The representation of meaning in memory.
Kintsch, W. (1998). Comprehension: a paradigm for cognition. Cambridge University Press.
Google Scholar
Kloos, H., & Sloutsky, V. M. (2008). What’s behind different kinds of kinds: effects of statistical density on learning and representation of categories. Journal of Experimental Psychology: General, 137(1), 52–72. https://doi.org/10.1037/0096-3445.137.1.52
Article
Google Scholar
Knoblauch, A., & Palm, G. (2002). Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback. Biological Cybernetics, 87(3), 151–167.
PubMed
Google Scholar
Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14.
Google Scholar
Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. University of Chicago Press.
Google Scholar
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211.
Google Scholar
Lenci, A. (2018). Distributional models of word meaning. Annual Review of Linguistics, 4, 151–171. https://doi.org/10.1146/annurev-linguistics-030514-125254
Article
Google Scholar
Löbner, S. (2013). Understanding semantics. Routledge.
Google Scholar
Locke, J. (1847). An essay concerning human understanding. Kay & Troutman.
Google Scholar
Louwerse, M. M., & Jeuniaux, P. (2010). The linguistic and embodied nature of conceptual processing. Cognition, 114(1), 96–104.
PubMed
Google Scholar
Lu, M. T., Preston, J. B., & Strick, P. L. (1994). Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. The Journal of Comparative Neurology, 341(3), 375–392. https://doi.org/10.1002/cne.903410308
Article
PubMed
Google Scholar
Lund, C. B., & Kevin, L. (1997). Modelling parsing constraints with high-dimensional context space. Language and Cognitive Processes, 12(2–3), 177–210.
Google Scholar
Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2), 203–208.
Google Scholar
Lupyan, G., & Clark, A. (2015). Words and the world predictive coding and the language-perception-cognition interface. Current Directions in Psychological Science, 24(4), 279–284.
Google Scholar
Lupyan, G., & Mirman, D. (2013). Linking language and categorization: evidence from aphasia. Cortex, 49(5), 1187–1194. https://doi.org/10.1016/j.cortex.2012.06.006
Article
PubMed
Google Scholar
Makris, N., & Pandya, D. N. (2009). The extreme capsule in humans and rethinking of the language circuitry. Brain Structure and Function, 213(3), 343–358. https://doi.org/10.1007/s00429-008-0199-8
Article
PubMed
Google Scholar
Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron, 44(1), 5–21.
PubMed
Google Scholar
Matthews, G. G. (2001). Neurobiology: molecules, cells, and systems. Blackwell Science.
Google Scholar
McKinney, W. (2010). Data structures for statistical computing in python. Proceedings of the 9th Python in Science Conference, 445, 51–56.
Google Scholar
Meyer, J. W., Makris, N., Bates, J. F., Caviness, V. S., & Kennedy, D. N. (1999). MRI-Based topographic parcellation of human cerebral white matter. NeuroImage, 9(1), 1–17.
PubMed
Google Scholar
Moseley, R., Carota, F., Hauk, O., Mohr, B., & Pulvermüller, F. (2012). A role for the motor system in binding abstract emotional meaning. Cerebral Cortex, 22(7), 1634–1647.
PubMed
Google Scholar
Moseley, R., & Pulvermüller, F. (2018). What can autism teach us about the role of sensorimotor systems in higher cognition? New clues from studies on language, action semantics, and abstract emotional concept processing. Cortex, 100, 149–190. https://doi.org/10.1016/j.cortex.2017.11.019
Article
PubMed
Google Scholar
Musso, M., Weiller, C., Kiebel, S., Müller, S. P., Bülau, P., & Rijntjes, M. (1999). Training-induced brain plasticity in aphasia. Brain, 122(9), 1781–1790. https://doi.org/10.1093/brain/122.9.1781
Article
PubMed
Google Scholar
Paivio, A. (1971). Imagery and verbal processes.
Paivio, A. (1991). Dual coding theory: retrospect and current status. Canadian Journal of Psychology/revue Canadienne De Psychologie, 45(3), 255.
Google Scholar
Palm, G. (1982). Neural assemblies. An alternative approach to artificial intelligence (Vol. 7). Springer-Verlag New York, Inc.
Google Scholar
Pandya, D. N. (1995). Anatomy of the auditory cortex. Revue Neurologique, 151(617), 486–494. https://doi.org/10.1016/B978-0-323-05283-2.00129-4
Article
PubMed
Google Scholar
Pandya, D. N., & Barnes, C. L. (1987). Architecture and connections of the frontal lobe. In E. Perecman (Ed.), The frontal lobes revisited (pp. 41–72). The IRBN Press.
Google Scholar
Pandya, D. N., & Yeterian, E. H. (1985). Architecture and connections of cortical association areas. In A. Peters & E. G. Jones (Eds.), Association and auditory cortices SE - 1 (Vol. 4, pp. 3–61). Springer US. https://doi.org/10.1007/978-1-4757-9619-3_1
Chapter
Google Scholar
Parker, A. (1998). Interaction of frontal and perirhinal cortices in visual object recognition memory in monkeys. European Journal of Neuroscience, 10(10), 3044–3057. https://doi.org/10.1046/j.1460-9568.1998.00306.x
Article
PubMed
Google Scholar
Parker, G. J. M., Luzzi, S., Alexander, D. C., Wheeler-Kingshott, C. A. M., Ciccarelli, O., & Lambon Ralph, M. A. (2005). Lateralization of ventral and dorsal auditory-language pathways in the human brain. NeuroImage, 24(3), 656–666. https://doi.org/10.1016/j.neuroimage.2004.08.047
Article
PubMed
Google Scholar
Paus, T., Castro-Alamancos, M. A., & Petrides, M. (2001). Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. European Journal of Neuroscience, 14(8), 1405–1411. https://doi.org/10.1046/j.0953-816X.2001.01757.x
Article
PubMed
Google Scholar
Petrides, M., & Pandya, D. N. (2009). Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biology, 7(8), e1000170. https://doi.org/10.1371/journal.pbio.1000170
Article
PubMed
PubMed Central
Google Scholar
Pulvermüller, F. (2013). How neurons make meaning: Brain mechanisms for embodied and abstract-symbolic semantics. Trends in Cognitive Sciences, 17(9), 458–470.
PubMed
Google Scholar
Pulvermüller, F. (2018a). Neurobiological mechanisms for semantic feature extraction and conceptual flexibility. Topics in Cognitive Science, 10(3), 590–620. https://doi.org/10.1111/tops.12367
Article
PubMed
Google Scholar
Pulvermüller, F. (2018b). The case of CAUSE: neurobiological mechanisms for grounding an abstract concept. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170129.
Google Scholar
Pulvermüller, F., & Garagnani, M. (2014). From sensorimotor learning to memory cells in prefrontal and temporal association cortex: a neurocomputational study of disembodiment. Cortex, 57, 1–21.
PubMed
Google Scholar
Pulvermüller, F., Garagnani, M., & Wennekers, T. (2014). Thinking in circuits: toward neurobiological explanation in cognitive neuroscience. Biological Cybernetics, 108(5), 573–593.
PubMed
PubMed Central
Google Scholar
Pulvermüller, F., Tomasello, R., Henningsen-Schomers, M. R., & Wennekers, T. (2021). Biological constraints on neural network models of cognitive function. Nature Reviews Neuroscience, 22, 488–502. https://doi.org/10.1038/s41583-021-00473-5
Article
PubMed
PubMed Central
Google Scholar
Quinn, P. C., Eimas, P. D., & Rosenkrantz, S. L. (1993). Evidence for representations of perceptually similar natural categories by 3-month-old and 4-month-old infants. Perception, 22(4), 463–475. https://doi.org/10.1068/p220463
Article
PubMed
Google Scholar
Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724. https://doi.org/10.1038/nn.2331
Article
PubMed
PubMed Central
Google Scholar
Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11800–11806. https://doi.org/10.1073/pnas.97.22.11800
Article
PubMed
PubMed Central
Google Scholar
Rilling, J. K. (2014). Comparative primate neuroimaging: insights into human brain evolution. Trends in Cognitive Sciences, 18(1), 46–55. https://doi.org/10.1016/j.tics.2013.09.013
Article
PubMed
Google Scholar
Rilling, J. K., Glasser, M. F., Jbabdi, S., Andersson, J., & Preuss, T. M. (2012). Continuity, divergence, and the evolution of brain language pathways. Frontiers in Evolutionary Neuroscience, 3, 11.
PubMed
PubMed Central
Google Scholar
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. J. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428. https://doi.org/10.1038/nn2072
Article
PubMed
Google Scholar
Rilling, J. K., & Van Den Heuvel, M. P. (2018). Comparative primate connectomics. Brain, Behavior and Evolution, 91(3), 170–179. https://doi.org/10.1159/000488886
Article
PubMed
Google Scholar
Rioult-Pedotti, M.-S., Friedman, D., & Donoghue, J. P. (2000). Learning-induced LTP in Neocortex. Science, 290(5491), 533–536.
PubMed
Google Scholar
Rizzolatti, G., & Luppino, G. (2001). The Cortical motor system. Neuron, 31(6), 889–901. https://doi.org/10.1016/S0896-6273(01)00423-8
Article
PubMed
Google Scholar
Romanski, L. M. (2007). Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex. Cerebral Cortex, 17(SUPPL. 1), i61–i69. https://doi.org/10.1093/cercor/bhm099
Article
PubMed
Google Scholar
Romanski, L. M., Bates, J. F., & Goldman-Rakic, P. S. (1999a). Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology, 403(2), 141–157. https://doi.org/10.1002/(SICI)1096-9861(19990111)403:2%3c141::AID-CNE1%3e3.0.CO;2-V
Article
PubMed
Google Scholar
Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999b). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131–1136. https://doi.org/10.1038/16056
Article
PubMed
PubMed Central
Google Scholar
Rosch, E., & Mervis, C. B. (1975). Family resemblances: studies in the internal structure of categories. Cognitive Psychology, 7(4), 573–605.
Google Scholar
Saur, D., Kreher, B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M.-S., Umarova, R., Musso, M., Glauche, V., Abel, S., Huber, W., Rijntjes, M., Hennig, J., & Weiller, C. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 18035–18040. https://doi.org/10.1073/pnas.0805234105
Article
PubMed
PubMed Central
Google Scholar
Schomers, M. R., Garagnani, M., & Pulvermüller, F. (2017). Neurocomputational consequences of evolutionary connectivity changes in perisylvian language cortex. Journal of Neuroscience, 37(11), 3045–3055. https://doi.org/10.1523/JNEUROSCI.2693-16.2017
Article
PubMed
Google Scholar
Schwanenflugel, P. J. (1991). Why are abstract concepts hard to understand. The Psychology of Word Meanings, 11, 223–250.
Google Scholar
Schwanenflugel, P. J., Akin, C., & Luh, W.-M. (1992). Context availability and the recall of abstract and concrete words. Memory & Cognition, 20(1), 96–104.
Google Scholar
Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and lexical decisions for abstract and concrete words. Journal of Memory and Language, 27(5), 499–520.
Google Scholar
Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python. Proceedings of the 9th Python in Science Conference, 57, 61.
Google Scholar
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(03), 417–424.
Google Scholar
Seltzer, B., & Pandya, D. N. (1989). Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey. Journal of Comparative Neurology, 290(4), 451–471. https://doi.org/10.1002/cne.902900402
Article
PubMed
Google Scholar
Setoh, P., Cheng, M., Bornstein, M. H., & Esposito, G. (2021). Contrasting lexical biases in bilingual English–Mandarin speech: Verb-biased mothers, but noun-biased toddlers. Journal of Child Language, 1–24.
Sloutsky, V. M. (2010). From perceptual categories to concepts: What develops? Cognitive Science, 34(7), 1244–1286. https://doi.org/10.1111/j.1551-6709.2010.01129.x
Article
PubMed
PubMed Central
Google Scholar
Smith, J. D., Redford, J. S., & Haas, S. M. (2008). Prototype abstraction by monkeys (Macaca mulatta). Journal of Experimental Psychology: General, 137(2), 390–401. https://doi.org/10.1037/0096-3445.137.2.390
Article
Google Scholar
Stramandinoli, F., Marocco, D., & Cangelosi, A. (2017). Making sense of words: a robotic model for language abstraction. Autonomous Robots, 41(2), 367–383.
Google Scholar
Tardif, T., Shatz, M., & Naigles, L. (1997). Caregiver speech and children’s use of nouns versus verbs: a comparison of English, Italian, and Mandarin. Journal of Child Language, 24(3), 535–565.
PubMed
Google Scholar
Thiebaut de Schotten, M., Dell’Acqua, F., Valabregue, R., & Catani, M. (2012). Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex, 48(1), 82–96. https://doi.org/10.1016/j.cortex.2011.10.001
Article
PubMed
Google Scholar
Tomasello, R., Garagnani, M., Wennekers, T., & Pulvermüller, F. (2017). Brain connections of words, perceptions and actions: a neurobiological model of spatio-temporal semantic activation in the human cortex. Neuropsychologia. https://doi.org/10.1016/j.neuropsychologia.2016.07.004
Article
PubMed
Google Scholar
Tomasello, R., Garagnani, M., Wennekers, T., & Pulvermüller, F. (2018). A neurobiologically constrained cortex model of semantic grounding with spiking neurons and brain-like connectivity. Frontiers in Computational Neuroscience, 12, 88. https://doi.org/10.3389/fncom.2018.00088
Article
PubMed
PubMed Central
Google Scholar
Tomasello, R., Wennekers, T., Garagnani, M., & Pulvermüller, F. (2019). Visual cortex recruitment during language processing in blind individuals is explained by Hebbian learning. Scientific Reports, 9(1), 1–16.
Google Scholar
Ungerleider, L. G., Gaffan, D., & Pelak, V. S. (1989). Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Experimental Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale, 76(3), 473–484. https://doi.org/10.1007/BF00248903
Article
PubMed
Google Scholar
Vigliocco, G., Kousta, S.-T., Rosa, P. A. D., Vinson, D. P., Tettamanti, M., Devlin, J. T., & Cappa, S. F. (2014). The neural representation of abstract words: the role of emotion. Cerebral Cortex, 24, 1767–1777. https://doi.org/10.1093/cercor/bht025
Article
PubMed
Google Scholar
Vigliocco, G., Vinson, D. P., Druks, J., Barber, H., & Cappa, S. F. (2011). Nouns and verbs in the brain: a review of behavioural, electrophysiological, neuropsychological and imaging studies. Neuroscience & Biobehavioral Reviews, 35(3), 407–426.
Google Scholar
Vincent-Lamarre, P., Massé, A. B., Lopes, M., Lord, M., Marcotte, O., & Harnad, S. (2016). The latent structure of dictionaries. Topics in Cognitive Science, 8(3), 625–659. https://doi.org/10.1111/tops.12211
Article
PubMed
Google Scholar
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., & Bright, J. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272.
PubMed
PubMed Central
Google Scholar
Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C. M., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230(1), 77–87. https://doi.org/10.1148/radiol.2301021640
Article
PubMed
Google Scholar
Waskom, M. L. (2021). Seaborn: statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
Article
Google Scholar
Waxman, S., Fu, X., Arunachalam, S., Leddon, E., Geraghty, K., & Song, H. (2013). Are nouns learned before verbs? Infants provide insight into a long-standing debate. Child Development Perspectives, 7(3), 155–159.
Google Scholar
Waxman, S. R., & Markow, D. B. (1995). Words as invitations to form categories: evidence from 12-to 13-month-old infants. Cognitive Psychology, 29(3), 257–302.
PubMed
Google Scholar
Webster, M. J., Bachevalier, J., & Ungerleider, L. G. (1994). Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cerebral Cortex, 4(5), 470–483. https://doi.org/10.1093/cercor/4.5.470
Article
PubMed
Google Scholar
Wennekers, T., Garagnani, M., & Pulvermüller, F. (2006). Language models based on Hebbian cell assemblies. Journal of Physiology Paris, 100(1–3), 16–30. https://doi.org/10.1016/j.jphysparis.2006.09.007
Article
PubMed
Google Scholar
Wiemer-Hastings, K. K., & Xu, X. (2005). Content differences for abstract and concrete concepts. Cognitive Science, 29(5), 719–736. https://doi.org/10.1207/s15516709cog0000_33
Article
Google Scholar
Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12(1), 1–24. https://doi.org/10.1016/S0006-3495(72)86068-5
Article
PubMed
PubMed Central
Google Scholar
Wilson-Mendenhall, C. D., Simmons, W. K., Martin, A., & Barsalou, L. W. (2013). Contextual processing of abstract concepts reveals neural representations of nonlinguistic semantic content. Journal of Cognitive Neuroscience, 25(6), 920–935. https://doi.org/10.1162/jocn_a_00361
Article
PubMed
PubMed Central
Google Scholar
Wittgenstein, L. (1953). Philosophical investigations. Philosophische Untersuchungen (Vol. x). Macmillan.
Google Scholar
Yee, E. (2019). Abstraction and concepts: When, how, where, what and why? Language Cognition and Neuroscience, 34(10), 1257–1265. https://doi.org/10.1080/23273798.2019.1660797
Article
Google Scholar
Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into context. Psychonomic Bulletin & Review, 23(4), 1015–1027. https://doi.org/10.3758/s13423-015-0948-7
Article
Google Scholar
Yeterian, E. H., Pandya, D. N., Tomaiuolo, F., & Petrides, M. (2012). The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex, 48(1), 68–81. https://doi.org/10.1016/j.cortex.2011.03.004
Article
Google Scholar
Young, M. P., Scannell, J. W., & Burns, G. (1995). The analysis of cortical connectivity. Springer.
Google Scholar
Young, M. P., Scannell, J. W., Burns, G. A. P. C., & Blakemore, C. (1994). Analysis of connectivity: neural systems in the cerebral cortex. Reviews in the Neurosciences, 5(3), 227–250. https://doi.org/10.1515/REVNEURO.1994.5.3.227
Article
PubMed
Google Scholar
Yuille, A. L., & Geiger, D. (2003). Winner-Take-All Mechanisms. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 1056–1060). MIT Press.
Google Scholar
Zdrazilova, L., & Pexman, P. M. (2013). Grasping the invisible: semantic processing of abstract words. Psychonomic Bulletin & Review, 20(6), 1312–1318.
Google Scholar
Zentall, T. R., Wasserman, E. A., Lazareva, O. F., Thompson, R. K., & Rattermann, M. J. (2008). Concept learning in animals. Comparative Cognition & Behavior Reviews, 3, 13–45. https://doi.org/10.3819/ccbr.2008.30002
Article
Google Scholar
Zwaan, R. A. (2016). Situation models, mental simulations, and abstract concepts in discourse comprehension. Psychonomic Bulletin & Review, 23(4), 1028–1034.
Google Scholar