Skip to main content
Log in

First unitary, then divided: the temporal dynamics of dividing attention

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Whether focused visual attention can be divided has been the topic of much investigation, and there is a compelling body of evidence showing that, at least under certain conditions, attention can be divided and deployed as two independent foci. Three experiments were conducted to examine whether attention can be deployed in divided form from the outset, or whether it is first deployed as a unitary focus before being divided. To test this, we adapted the methodology of Jefferies, Enns, and Di Lollo (Journal of Experimental Psychology: Human Perception and Performance 40: 465, 2014), who used a dual-stream Attentional Blink paradigm and two letter-pair targets. One aspect of the AB, Lag-1 sparing, has been shown to occur only if the second target pair appears within the focus of attention. By presenting the second target pair at various spatial locations and assessing the magnitude of Lag-1 sparing, we probed the spatial distribution of attention. By systematically manipulating the stimulus-onset-asynchrony between the targets, we also tracked changes to the spatial distribution of attention over time. The results showed that even under conditions which encourage the division of attention, the attentional focus is first deployed in unitary form before being divided. It is then maintained in divided form only briefly before settling on a single location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnell, K. M., & Jolicoeur, P. (1999). The attentional blink across stimulus modalities: evidence for central processing limitations. Journal of Experimental Psychology: Human Perception and Performance, 25, 630.

    Google Scholar 

  • Awh, E., & Pashler, H. (2000). Evidence for split attentional foci. Journal of Experimental Psychology: Human Perception and Performance, 26, 834.

    PubMed  Google Scholar 

  • Barriopedro, M. I., & Botella, J. (1998). New evidence for the zoom lens model using the RSVP technique. Perception & Psychophysics, 60, 1406–1414.

    Article  Google Scholar 

  • Bay, M., & Wyble, B. (2014). The benefit of attention is not diminished when distributed over two simultaneous cues. Attention, Perception, & Psychophysics, 76, 1287–1297.

    Article  Google Scholar 

  • Benso, M., Turatto, G., Mascetti, G., & Umiltà, C. (1998). The time course of attentional focusing. European Journal of Cognitive Psychology, 10(4), 373–388.

    Article  Google Scholar 

  • Bichot, N. R., Cave, K. R., & Pashler, H. (1999). Visual selection mediated by location: Feature-based selection of noncontiguous locations. Perception & Psychophysics, 61(3), 403–423.

    Article  Google Scholar 

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B., & Öğmen, H. (2006). Visual masking: Time slices th unconscious vision (Vol no. 41). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Breitmeyer, B. G., Hoar, W. S., Randall, D. J., & Conte, F. P. (1984). Visual masking: an integrative approach. London, UK: Clarendon Press.

    Google Scholar 

  • Castiello, U., & Umiltà, C. (1992). Splitting focal attention. Journal of Experimental Psychology: Human Perception and Performance, 18, 837.

    PubMed  Google Scholar 

  • Cave, K. R., Bush, W. S., & Taylor, T. G. (2010). Split attention as part of a flexible attentional system for complex scenes: comment on Jans, Peters, and De Weerd (2010).

  • Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109.

    PubMed  Google Scholar 

  • Colzato, L. S., Spapé, M. M., Pannebakker, M. M., & Hommel, B. (2007). Working memory and the attentional blink: Blink size is predicted by individual differences in operation span. Psychonomic Bulletin & Review, 14, 1051–1057.

    Article  Google Scholar 

  • Deco, G., Pollatos, O., & Zihl, J. (2002). The time course of selective visual attention: theory and experiments. Vision Research, 42, 2925–2945.

    Article  PubMed  Google Scholar 

  • Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 1245–1255.

    Article  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  PubMed  Google Scholar 

  • Di Lollo, V., Kawahara, J. I., Ghorashi, S. S., & Enns, J. T. (2005). The attentional blink: Resource depletion or temporary loss of control? Psychological Research, 69, 191–200.

    Article  PubMed  Google Scholar 

  • Dubois, J., Hamker, F. H., & VanRullen, R. (2009). Attentional selection of noncontiguous locations: The spotlight is only transiently “split”. Journal of Vision, 9, 3–3.

    Article  PubMed  Google Scholar 

  • Duncan, J., & Humphreys, G. (2002). Visual search and stimulus similarity. Psychological Review, 96, 433–458.

    Article  Google Scholar 

  • Egeth, H. E., & Yantis, S. (1997). Visual attention: Control, representation, and time course. Annual Review of Psychology, 48, 269–297.

    Article  PubMed  Google Scholar 

  • Egly, R., & Homa, D. (1984). Sensitization of the visual field. Journal of Experimental Psychology: Human Perception and Performance, 10, 778.

    PubMed  Google Scholar 

  • Eimer, M. (1999). Attending to quadrants and ring-shaped regions: ERP effects of visual attention in different spatial selection tasks. Psychophysiology, 36, 491–503.

    Article  PubMed  Google Scholar 

  • Eimer, M. (2000). An ERP study of sustained spatial attention to stimulus eccentricity. Biological Psychology, 52, 205–220.

    Article  PubMed  Google Scholar 

  • Eriksen, C. W., & Yeh, Y. Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 583.

    PubMed  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

    Article  Google Scholar 

  • Fiebelkorn, I. C., Saalmann, Y. B., & Kastner, S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23, 2553–2558.

    Article  PubMed  Google Scholar 

  • Ghorashi, S. M. S., Jefferies, L. N., Kawahara, J.-I., & Wantanabe, K. (2008). Does attention accompany the conscious awareness of both location and identity of an object. Psyche, 14, 1–13.

    Google Scholar 

  • Giesbrecht, B., & Di Lollo, V. (1998). Beyond the attentional blink: visual masking by object substitution. Journal of Experimental Psychology: Human Perception and Performance, 24, 1454.

    PubMed  Google Scholar 

  • Godijn, R., & Theeuwes, J. (2003). The relationship between exogenous and endogenous saccades and attention. In R. Radach, J. Hyona, & H. Deubel (Eds.), The mind’s eye: cognitive and applied aspects of eye movement research (pp. 3–26). Elsevier (ISBN: 0–444–51020–6).

  • Goodbourn, P. T., & Holcombe, A. O. (2015). “Pseudoextinction”: asymmetries in simultaneous attentional selection. Journal of Experimental Psychology: Human Perception And Performance, 41, 364.

    PubMed  Google Scholar 

  • Hamker, F. H. (2004). A dynamic model of how feature cues guide spatial attention. Vision Research, 44, 501–521.

    Article  PubMed  Google Scholar 

  • Hamker, F. H. (2005). The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cerebral Cortex, 15, 431–447.

    Article  PubMed  Google Scholar 

  • Hamker, F. H. (2006). Modeling feature-based attention as an active top-down inference process. Biosystems, 86, 91–99.

    Article  PubMed  Google Scholar 

  • Heinze, H. J., Luck, S. J., Munte, T. F., Gös, A., Mangun, G. R., & Hillyard, S. A. (1994). Attention to adjacent and separate positions in space: an electrophysiological analysis. Perception & Psychophysics, 56, 42–52.

    Article  Google Scholar 

  • Holländer, A., Corballis, M. C., & Hamm, J. P. (2005). Visual-field asymmetry in dual-stream RSVP. Neuropsychologia, 43, 35–40.

    Article  PubMed  Google Scholar 

  • Hoogendorn, H., Carlson, T. A., VanRullen, R., & Verstraten, F. A. J. (2010). Timing divided attention. Attention, Perception, & Psychophysics, 72, 2059–2068.

    Article  Google Scholar 

  • Huang, D., Xue, L., Wang, X., & Chen, Y. (2016). Using spatial uncertainty to manipulate the size of the attention focus. Scientific Reports, 6, 1–7.

    Article  Google Scholar 

  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489–1506.

    Article  PubMed  Google Scholar 

  • Jans, B., Peters, J. C., & De Weerd, P. (2010). Visual spatial attention to multiple locations at once: the jury is still out. Psychological Review, 117, 637.

    Article  PubMed  Google Scholar 

  • Jefferies, L. N., & Di Lollo, V. (2009). Linear changes in the spatial extent of the focus of attention across time. Journal of Experimental Psychology: Human Perception and Performance, 35, 1020.

    PubMed  Google Scholar 

  • Jefferies, L. N., & Di Lollo, V. (2015). When can spatial attention be deployed in the form of an annulus? Attention, Perception, & Psychophysics, 77, 413–422.

    Article  Google Scholar 

  • Jefferies, L. N., & Di Lollo, V. (2017). Deployment of spatial attention to a structural framework: exogenous (alerting) and endogenous (goal-directed) factors. Attention, Perception, & Psychophysics, 79, 1933–1944.

    Article  Google Scholar 

  • Jefferies, L. N., Enns, J. T., & Di Lollo, V. (2014). The flexible focus: Whether spatial attention is unitary or divided depends on observer goals. Journal of Experimental Psychology: Human Perception and Performance, 40, 465.

    PubMed  Google Scholar 

  • Jefferies, L. N., Enns, J. T., & Di Lollo, V. (2017). The exogenous and endogenous control of attentional focusing. Psychological Research Psychologische Forschung, 1–18.

  • Jefferies, L. N., Ghorashi, S., Kawahara, J. I., & Di Lollo, V. (2007). Ignorance is bliss: The role of observer expectation in dynamic spatial tuning of the attentional focus. Perception & Psychophysics, 69, 1162–1174.

    Article  Google Scholar 

  • Jefferies, L. N., Gmeindl, L., & Yantis, S. (2014). Attending to illusory differences in object size. Attention, Perception, & Psychophysics, 76, 1393–1402.

    Article  Google Scholar 

  • Jefferies, L. N., Roggeveen, A. B., Enns, J. T., Bennett, P. J., Sekuler, A. B., & Di Lollo, V. (2015). On the time course of attentional focusing in older adults. Psychological Research Psychologische Forschung, 79, 28–41.

    Article  PubMed  Google Scholar 

  • Jonides, J. (1983). Further toward a model of the mind’s eye’s movement. Bulletin of the Psychonomic Society, 21, 247–250.

    Article  Google Scholar 

  • Juola, J. F., Bouwhuis, D. G., Cooper, E. E., & Warner, C. B. (1991). Control of attention around the fovea. Journal of Experimental Psychology: Human Perception and Performance, 17, 125–141.

    PubMed  Google Scholar 

  • Kawahara, J. I., & Yamada, Y. (2006). Two noncontiguous locations can be attended concurrently: evidence from the attentional blink. Psychonomic Bulletin & Review, 13, 594–599.

    Article  Google Scholar 

  • Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36, 1.

    Google Scholar 

  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4, 219–227.

    PubMed  Google Scholar 

  • Kramer, A. F., & Hahn, S. (1995). Splitting the beam: distribution of attention over noncontiguous regions of the visual field. Psychological Science, 381–386.

  • Kristjánsson, Á, & Sigurdardottir, H. M. (2008). On the benefits of transient attention across the visual field. Perception, 37, 747–764.

    Article  PubMed  Google Scholar 

  • LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology: Human Perception and Performance, 9, 371.

    PubMed  Google Scholar 

  • LaBerge, D. (1995). Attentional processing: the brain’s art of mindfulness (Vol. 2). Cambridge: Harvard University Press.

    Book  Google Scholar 

  • LaBerge, D., & Brown, V. (1989). Theory of attentional operations in shape identification. Psychological Review, 9, 101.

    Article  Google Scholar 

  • Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically. Current Biology, 22, 1000–1004.

    Article  PubMed  Google Scholar 

  • Luck, S. J., Vogel, E. K., & Shapiro, K. L. (1996). Word meanings can be accessed but not reported during the attentional blink. Nature, 383, 616.

    Article  PubMed  Google Scholar 

  • Lunau, R., & Olivers, C. N. (2010). The attentional blink and lag 1 sparing are nonspatial. Attention, Perception, & Psychophysics, 72, 317–325.

    Article  Google Scholar 

  • McMains, S. A., & Somers, D. C. (2004). Multiple spotlights of attentional selection in human visual cortex. Neuron, 42, 677–686.

    Article  PubMed  Google Scholar 

  • McMains, S. A., & Somers, D. C. (2005). Processing efficiency of divided spatial attention mechanisms in human visual cortex. The Journal of Neuroscience, 25(41), 9444–9448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller, H. J., & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315.

    PubMed  Google Scholar 

  • Müller, M. M., Malinowski, P., Gruber, T., & Hillyard, S. A. (2003). Sustained division of the attentional spotlight. Nature, 424(6946), 309–312.

    Article  PubMed  Google Scholar 

  • Nebel, K., Wiese, H., Stude, P., de Greiff, A., Diener, H. C., & Keidel, M. (2005). On the neural basis of focused and divided attention. Cognitive Brain Research, 25, 760–776.

    Article  PubMed  Google Scholar 

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437–442.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    Article  PubMed  Google Scholar 

  • Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology: General, 109, 160.

    Article  Google Scholar 

  • Potter, M. C., Chun, M. M., Banks, B. S., & Muckenhoupt, M. (1998). Two attentional deficits in serial target search: the visual attentional blink and an amodal task-switch deficit. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 979.

    PubMed  Google Scholar 

  • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: an attentional blink? Journal of Experimental Psychology: Human Perception and Performance, 18, 849.

    PubMed  Google Scholar 

  • Scalf, P. E., Banich, M. T., Kramer, A. F., Narechania, K., & Simon, C. D. (2007). Double take: parallel processing by the cerebral hemispheres reduces attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 33, 298.

    PubMed  Google Scholar 

  • Seiffert, A. E., & Di Lollo, V. (1997). Low-level masking in the attentional blink. Journal of Experimental psychology: Human perception and performance, 23, 1061.

    Google Scholar 

  • Shapiro, K. L., Caldwell, J., & Sorensen, R. E. (1997). Personal names and the attentional blink: a visual” cocktail party” effect. Journal of Experimental Psychology-Human Perception and Performance, 23, 504–514.

    Article  PubMed  Google Scholar 

  • Shih, S. I. (2000). Recall of two visual targets embedded in RSVP streams of distractors depends on their temporal and spatial relationship. Perception & Psychophysics, 62, 1348–1355.

    Article  Google Scholar 

  • Śmigasiewicz, K., & Möller, F. (2011). Mechanisms underlying the left visual-field advantage in the dual stream RSVP task: Evidence from N2pc, P3, and distractor-evoked VEPs. Psychophysiology, 48, 1096–1106.

    Article  PubMed  Google Scholar 

  • Śmigasiewicz, K., Shalgi, S., Hsieh, S., Möller, F., Jaffe, S., Chang, C. C., & Verleger, R. (2010). Left visual-field advantage in the dual-stream RSVP task and reading-direction: a study in three nations. Neuropsychologia, 48, 2852–2860.

    Article  PubMed  Google Scholar 

  • Spalek, T. M., Falcon, L. J., & Di Lollo, V. (2006). Attentional blink and attentional capture: endogenous versus exogenous control over paying attention to two important events in close succession. Perception & Psychophysics, 68, 674–684.

    Article  Google Scholar 

  • Standage, D. I., Trappenberg, T. P., & Klein, R. M. (2005). Modelling divided visual attention with a winner-take-all network. Neural Networks, 18, 620–627.

    Article  PubMed  Google Scholar 

  • Trappenberg, T. P., & Standage, D. I. (2005). Multi-packet regions in stabilized continuous attractor networks. Neurocomputing, 65, 617–622.

    Article  Google Scholar 

  • Verleger, R., Sprenger, A., Gebauer, S., Fritzmannova, M., Friedrich, M., Kraft, S., & Jaśkowski, P. (2009). On why left events are the right ones: neural mechanisms underlying the left-hemifield advantage in rapid serial visual presentation. Journal of Cognitive Neuroscience, 21, 474–488.

    Article  PubMed  Google Scholar 

  • Visser, T. A., Bischof, W. F., & Di Lollo, V. (1999). Attentional switching in spatial and nonspatial domains: Evidence from the attentional blink. Psychological Bulletin, 125, 458.

    Article  Google Scholar 

  • Visser, T. A., Bischof, W. F., & Di Lollo, V. (2004). Rapid serial visual distraction: task-irrelevant items can produce an attentional blink. Perception & Psychophysics, 66(8), 1418–1432.

    Article  Google Scholar 

  • Visser, T. A., Zuvic, S. M., Bischof, W. F., & Di Lollo, V. (1999). The attentional blink with targets in different spatial locations. Psychonomic Bulletin & Review, 6, 432–436.

    Article  Google Scholar 

  • Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24, 1656.

    PubMed  Google Scholar 

  • Ward, R., Duncan, J., & Shapiro, K. (1996). The slow time-course of visual attention. Cognitive Psychology, 30, 79–109.

    Article  PubMed  Google Scholar 

  • Weichselgartner, E., & Sperling, G. (1987). Dynamics of automatic and controlled visual attention. Science, 238, 778–780.

    Article  PubMed  Google Scholar 

  • Wyble, B., Bowman, H., & Potter, M. C. (2009). Categorically defined targets trigger spatiotemporal visual attention. Journal of Experimental Psychology: Human Perception and Performance, 35, 324–337.

    PubMed  Google Scholar 

  • Yamada, Y., & Kawahara, J. I. (2007). Dividing attention between two different categories and locations in rapid serial visual presentations. Perception & Psychophysics, 69, 1218–1229.

    Article  Google Scholar 

  • Zirnsak, M., Beuth, F., & Hamker, F. H. (2011). Split of spatial attention as predicted by a systems-level model of visual attention. European Journal of Neuroscience, 33, 2035–2045.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Hommel, E. Akyürek, F. Ferlazzo, and an anonymous reviewer for helpful comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa N. Jefferies.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jefferies, L.N., Witt, J.B. First unitary, then divided: the temporal dynamics of dividing attention. Psychological Research 83, 1426–1443 (2019). https://doi.org/10.1007/s00426-018-1018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-018-1018-3

Navigation