Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin and Review, 6, 57–86.
Article
PubMed
Google Scholar
Brown, N. R., & Tan, S. (2011). Magnitude comparison revisited: An alternative approach to binary choice under uncertainty. Psychonomic Bulletin and Review, 18(2), 392–398. https://doi.org/10.3758/s13423-011-0057-1.
Article
PubMed
Google Scholar
Brunswik, E. (1952). The conceptual framework of psychology. In International encyclopedia of unified science (Vol. 1, pp. 656–760). Chicago: University Press, (No. 10).
Google Scholar
Castela, M., Kellen, D., Erdfelder, E., & Hilbig, B. E. (2014). The impact of subjective recognition experiences on recognition heuristic use: A multinomial processing tree approach. Psychonomic Bulletin and Review, 21, 1131–1138.
Article
PubMed
Google Scholar
Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating amazon’s mechanical turk as a tool for experimental behavioral research. PLoS One, 8(3), e57410.
Article
PubMed
PubMed Central
Google Scholar
Dhami, M. K., Hertwig, R., & Hoffrage, U. (2004). The role of representative design in an ecological approach to cognition. Psychological Bulletin, 130, 959–988.
Article
PubMed
Google Scholar
Erdfelder, E., Auer, T. S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models: A review of the literature. Zeitschrift für Psychologie/Journal of Psychology, 217, 108–124.
Article
Google Scholar
Erlebacher, A. (1977). Design and analysis of experiments contrasting the within- and between-subjects manipulation of the independent variable. Psychological Bulletin, 84, 212–219.
Article
Google Scholar
Fischhoff, B. (1982). Debiasing. In D. Kahneman, P. Slovic & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 422–444). Cambridge: University Press.
Chapter
Google Scholar
Fleming, S. M., & Dolan, R. J. (2012). The neural basis of metacognitive ability. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1594), 1338–1349. https://doi.org/10.1098/rstb.2011.0417.
Article
Google Scholar
Fleming, S. M., & Lau, H. C. (2014). How to measure metacognition. Frontiers in Human Neuroscience, 8, 443. https://doi.org/10.3389/fnhum.2014.00443.
Article
PubMed
PubMed Central
Google Scholar
Gigerenzer, G., & Goldstein, D. G. (2011). The recognition heuristic: A decade of research. Judgment and Decision Making, 6, 100–121.
Google Scholar
Gigerenzer, G., Hoffrage, U., & Kleinbölting, H. (1991). Probabilistic mental models: A Brunswikian theory of confidence. Psychological Review, 98(4), 506–528. https://doi.org/10.1037/0033-295X.98.4.506.
Article
PubMed
Google Scholar
Glöckner, A., Hilbig, B. E., & Jekel, M. (2014). What is adaptive about adaptive decision making? A parallel constraint satisfaction account. Cognition, 133, 641–666.
Article
PubMed
Google Scholar
Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109, 75–90.
Article
PubMed
Google Scholar
Griffiths, T. L., Vul, E., & Sanborn, A. N. (2012). Bridging levels of analysis for probabilistic models of cognition. Current Directions in Psychological Science, 21, 263–268.
Article
Google Scholar
Heck, D. W., Arnold, N. R., & Arnold, D. (2017). TreeBUGS: An R package for hierarchical multinomial-processing-tree modeling. Behavior Research Methods. https://doi.org/10.3758/s13428-017-0869-7.
Article
PubMed Central
Google Scholar
Heck, D. W., & Erdfelder, E. (2017). Linking process and measurement models of recognition-based decisions. Psychological Review, 124, 442–471.
Article
PubMed
Google Scholar
Hilbig, B. E., Erdfelder, E., & Pohl, R. F. (2010). One-reason decision-making unveiled: A measurement model of the recognition heuristic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 123–134.
PubMed
Google Scholar
Hilbig, B. E., Michalkiewicz, M., Castela, M., Pohl, R. F., & Erdfelder, E. (2015). Whatever the cost? Information integration in memory-based inferences depends on cognitive effort. Memory & Cognition, 43, 659–671.
Article
Google Scholar
Hoffrage, U. (2011). Recognition judgments and the performance of the recognition heuristic depend on the size of the reference class. Judgment and Decision Making, 6(1), 43.
Google Scholar
Hoffrage, U., Hafenbrädl, S., & Marewski, J. N. (2017). The fast-and-frugal heuristics program. In L. J. Ball & V. A. Thompson (Eds.), International Handbook of Thinking & Reasoning. Basingstoke: Routledge.
Google Scholar
Horn, S. S., Pachur, T., & Mata, R. (2015). How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach. Acta Psychologica, 154, 77–85.
Article
PubMed
Google Scholar
Horn, S. S., Ruggeri, A., & Pachur, T. (2016). The development of adaptive decision making: Recognition-based inference in children and adolescents. Developmental Psychology, 52, 1470–1485.
Article
PubMed
Google Scholar
Jeffreys, H. (1961). Theory of probability. Oxford: Clarendon Press.
Google Scholar
Josef, A. K., Richter, D., Samanez-Larkin, G. R., Wagner, G. G., Hertwig, R., & Mata, R. (2016). Stability and change in risk-taking propensity across the adult life span. Journal of Personality and Social Psychology, 111, 430–450.
Article
PubMed
PubMed Central
Google Scholar
Kämmer, J. E., Gaissmaier, W., Reimer, T., & Schermuly, C. C. (2014). The adaptive use of recognition in group decision making. Cognitive Science, 38, 911–942.
Article
PubMed
Google Scholar
Katsikopoulos, K. V., Schooler, L. J., & Hertwig, R. (2010). The robust beauty of ordinary information. Psychological Review, 117, 1259–1266.
Article
PubMed
Google Scholar
Kellen, D., Pachur, T., & Hertwig, R. (2016). How (in) variant are subjective representations of described and experienced risk and rewards? Cognition, 157, 126–138.
Article
PubMed
Google Scholar
Klauer, K. C. (2010). Hierarchical multinomial processing tree models: A latent-trait approach. Psychometrika, 75, 70–98.
Article
Google Scholar
Koriat, A. (2007). Metacognition and consciousness. In P. D. Zelazo, M. Moscovitch & E. Thompson (Eds.), The Cambridge handbook of consciousness (pp. 289–325). New York: Cambridge University Press.
Chapter
Google Scholar
Lange, K., Kühn, S., & Filevich, E. (2015). “Just Another Tool for Online Studies” (JATOS): An Easy Solution for Setup and Management of Web Servers Supporting Online Studies. PLoS One, 10(6), e0130834. https://doi.org/10.1371/journal.pone.0130834.
Article
PubMed
PubMed Central
Google Scholar
Lee, M. D., & Wagenmakers, E.-J. (2013). Bayesian modeling for cognitive science: A practical course. Cambridge: Cambridge University Press.
Book
Google Scholar
Lindenberger, U., & von Oertzen, T. (2006). Variability in cognitive aging: From taxonomy to theory. In F.I.M. Craik & E. Bialystok (Eds.), Lifespan cognition: Mechanisms of change (pp. 297–314). Oxford: University Press.
Chapter
Google Scholar
Maniscalco, B., & Lau, H. (2012). A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings. Consciousness and Cognition, 21(1), 422–430. https://doi.org/10.1016/j.concog.2011.09.021.
Article
PubMed
Google Scholar
Marewski, J. N., Pohl, R. F., & Vitouch, O. (2010). Recognition-based judgments and decisions: Introduction to the special issue. Judgment and Decision Making, 5, 207–215.
Mata, R. (2005). A neurocomputational approach to decision making and aging. Artificial Neural Networks: Formal Models and Their Applications–ICANN, pp. 411–416.
Matzke, D., Dolan, C. V., Batchelder, W. H., & Wagenmakers, E.-J. (2015). Bayesian estimation of multinomial processing tree models with heterogeneity in participants and items. Psychometrika, 80, 205–235.
Article
PubMed
Google Scholar
McCloy, R., Beaman, C. P., Frosch, C., & Goddard, K. (2010). Fast and frugal framing effects? Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1042–1052.
Google Scholar
Michalkiewicz, M., & Erdfelder, E. (2016). Individual differences in use of the recognition heuristic are stable across time, choice objects, domains, and presentation formats. Memory & Cognition, 44, 454–468.
Article
Google Scholar
Newell, B. R., & Shanks, D. R. (2004). On the role of recognition in decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 923–935.
PubMed
Google Scholar
Norman, E., Price, M. C., & Jones, E. (2011). Measuring strategic control in artificial grammar learning. Consciousness and Cognition, 20, 1920–1929. https://doi.org/10.1016/j.concog.2011.07.008.
Article
PubMed
Google Scholar
Nunez, M. D., Srinivasan, R., & Vandekerckhove, J. (2015). Individual differences in attention influence perceptual decision making. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2015.00018.
Article
PubMed
PubMed Central
Google Scholar
Pachur, T., Bröder, A., & Marewski, J. (2008). The recognition heuristic in memory-based inference: Is recognition a non-compensatory cue? Journal of Behavioral Decision Making, 21, 183–210.
Article
Google Scholar
Pachur, T., & Hertwig, R. (2006). On the psychology of the recognition heuristic: Retrieval primacy as a key determinant of its use. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 983–1002.
PubMed
Google Scholar
Pachur, T., Mata, R., & Schooler, L. J. (2009). Cognitive aging and the adaptive use of recognition in decision making. Psychology and Aging, 24, 901–915.
Article
PubMed
Google Scholar
Pachur, T., Todd, P. M., Gigerenzer, G., Schooler, L. J., & Goldstein, D. G. (2011). The recognition heuristic: A review of theory and tests. Frontiers in Cognitive Science, 2, 147.
Google Scholar
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing, 124, 125.
Pohl, R. F. (2006). Empirical tests of the recognition heuristic. Journal of Behavioral Decision Making, 19, 251–271.
Article
Google Scholar
Pohl, R. F., & Hilbig, B. E. (2012). The role of subjective linear orders in probabilistic inferences. Psychonomic Bulletin & Review, 19, 1178–1186.
Article
Google Scholar
Pohl, R. F., Michalkiewicz, M., Erdfelder, E., & Hilbig, B. E. (2017). Use of the recognition heuristic depends on the domain’s recognition validity, not on the recognition validity of selected sets of objects. Memory & Cognition. https://doi.org/10.3758/s13421-017-0689-0 (Advance online publication).
Rao, A. R., & Monroe, K. B. (1989). The effect of price, brand name, and store name on buyers’ perceptions of product quality: An integrative review. Journal of Marketing Researc, 26, 351–357.
Rausch, M., Müller, H. J., & Zehetleitner, M. (2015). Metacognitive sensitivity of subjective reports of decisional confidence and visual experience. Consciousness and Cognition, 35, 192–205.
Article
PubMed
Google Scholar
Rosburg, T., Mecklinger, A., & Frings, C. (2011). When the brain decides: A familiarity-based approach to the recognition heuristic as evidenced by event-related brain potentials. Psychological Science, 22, 1527–1534.
Article
PubMed
Google Scholar
Sandberg, K., Timmermans, B., Overgaard, M., & Cleeremans, A. (2010). Measuring consciousness: is one measure better than the other? Consciousness and Cognition, 19, 1069–1078. https://doi.org/10.1016/j.concog.2009.12.013.
Article
PubMed
Google Scholar
Schweickart, O., & Brown, N. R. (2014). Magnitude comparison extended: How lack of knowledge informs comparative judgments under uncertainty. Journal of Experimental Psychology: General, 143, 273–294.
Article
Google Scholar
Siedlecka, M., Paulewicz, B., & Wierzchoń, M. (2016). But I Was So Sure! Metacognitive Judgments Are Less Accurate Given Prospectively than Retrospectively. Consciousness Research. https://doi.org/10.3389/fpsyg.2016.00218.
Article
Google Scholar
Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children’s addition. Journal of Experimental Psychology: General, 116, 250–264.
Article
Google Scholar
Steingroever, H., Pachur, T., Šmíra, M., & Lee, M. D. (2017). Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision-makers. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-017-1331-7.
Article
Google Scholar
Thiele, J. E., Haaf, J. M., & Rouder, J. N. (2017). Is there variation across individuals in processing? Bayesian analysis for systems factorial technology. Journal of Mathematical Psychology. https://doi.org/10.1016/j.jmp.2017.09.002.
Article
Google Scholar
Wierzchoń, M., Asanowicz, D., Paulewicz, B., & Cleeremans, A. (2012). Subjective measures of consciousness in artificial grammar learning task. Consciousness and Cognition, 21(3), 1141–1153. https://doi.org/10.1016/j.concog.2012.05.012.
Article
PubMed
Google Scholar
Wright, J. C., & Murphy, G. L. (1984). The utility of theories in intuitive statistics: The robustness of theory-based judgments. Journal of Experimental Psychology: General, 113, 301–322.
Article
Google Scholar