Arnsten, A. F., Cai, J. X., Steere, J. C., & Goldman-Rakic, P. S. (1995). Dopamine D2 receptor mechanisms contribute to age-related cognitive decline: The effects of quinpirole on memory and motor performance in monkeys. J Neurosci, 15(5 Pt 1), 3429–3439.
Article
PubMed
Google Scholar
Bäckman, L., Lindenberger, U., Li, S. C., & Nyberg, L. (2010). Linking cognitive aging to alterations in dopamine neurotransmitter functioning: Recent data and future avenues. Neuroscience & Biobehavioral Reviews, 34(5), 670–677. https://doi.org/10.1016/j.neubiorev.2009.12.008.
Article
Google Scholar
Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neuroscience & Biobehavioral Reviews, 30(6), 791–807. https://doi.org/10.1016/j.neubiorev.2006.06.005.
Article
Google Scholar
Beninger, R. J., & Miller, R. (1998). Dopamine D1-like receptors and reward-related incentive learning. Neuroscience & Biobehavioral Reviews, 22(2), 335–345.
Article
Google Scholar
Bertram, L., Bockenhoff, A., Demuth, I., Duzel, S., Eckardt, R., & Li, S. C., et al. (2014). Cohort profile: The Berlin Aging Study II (BASE-II). International Journal of Epidemiology, 43(3), 703–712. https://doi.org/10.1093/ije/dyt018.
Article
PubMed
Google Scholar
Boeing, H., Bohlscheid-Thomas, S., Voss, S., Schneeweiss, S., & Wahrendorf, J. (1997). The relative validity of vitamin intakes derived from a food frequency questionnaire compared to 24-hour recalls and biological measurements: Results from the EPIC pilot study in Germany. European Prospective Investigation into Cancer and Nutrition. International Journal of Epidemiology, 26(Suppl 1), S82–S90.
Article
PubMed
Google Scholar
Brillat-Savarin, A. (1826/1842). Physiologie du Gout, ou Meditations de Gastronomie Transcendante. Paris: Charpentier.
Google Scholar
Carlsson, A., & Lindqvist, M. (1978). Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino-acids in rat brain. Naunyn Schmiedebergs Archieves of Pharmacology, 303(2), 157–164.
Article
Google Scholar
Cheung, G. W., & Resvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 9(2), 233–255.
Article
Google Scholar
Colzato, L. S., de Haan, A. M., & Hommel, B. (2015). Food for creativity: Tyrosine promotes deep thinking. Psychological Research, 79(5), 709–714. https://doi.org/10.1007/s00426-014-0610-4.
Article
PubMed
Google Scholar
Colzato, L. S., Jongkees, B. J., Sellaro, R., & Hommel, B. (2013). Working memory reloaded: Tyrosine repletes updating in the N-back task. Frontiers in Behavioral Neuroscience, 7, 200. https://doi.org/10.3389/fnbeh.2013.00200.
Article
PubMed
PubMed Central
Google Scholar
Colzato, L. S., Jongkees, B. J., Sellaro, R., van den Wildenberg, W. P., & Hommel, B. (2014). Eating to stop: Tyrosine supplementation enhances inhibitory control but not response execution. Neuropsychologia, 62, 398–402. https://doi.org/10.1016/j.neuropsychologia.2013.12.027.
Article
PubMed
Google Scholar
Deijen, J. B., & Orlebeke, J. F. (1994). Effect of tyrosine on cognitive function and blood pressure under stress. Brain Research Bulletin, 33(3), 319–323.
Article
PubMed
Google Scholar
Deijen, J. B., Wientjes, C. J., Vullinghs, H. F., Cloin, P. A., & Langefeld, J. J. (1999). Tyrosine improves cognitive performance and reduces blood pressure in cadets after one week of a combat training course. Brain Research Bulletin, 48(2), 203–209.
Article
PubMed
Google Scholar
Duzel, S., Voelkle, M. C., Duzel, E., Gerstorf, D., Drewelies, J., & Steinhagen-Thiessen, E., et al. (2016). The Subjective Health Horizon Questionnaire (SHH-Q): Assessing future time perspectives for facets of an active lifestyle. Gerontology, 62(3), 345–353. https://doi.org/10.1159/000441493.
Article
PubMed
Google Scholar
Fernstrom, J. D. (1983). Role of precursor availability in control of monoamine biosynthesis in brain. Physiological Review, 63(2), 484–546.
Article
Google Scholar
Fernstrom, J. D., & Fernstrom, M. H. (2007). Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. Journal of Nutrition, 137(6 Suppl 1), 1539S–1547S (discussion 1548S).
Article
PubMed
Google Scholar
Gerstorf, D., Bertram, L., Lindenberger, U., Pawelec, G., Demuth, I., & Steinhagen-Thiessen, E., et al. (2016). Editorial. Gerontology, 62(3), 311–315. https://doi.org/10.1159/000441495.
Article
PubMed
Google Scholar
Goldman-Rakic, P. S., & Brown, R. M. (1981). Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience, 6(2), 177–187.
Article
PubMed
Google Scholar
Hase, A., Jung, S. E., & aan het Rot, M (2015). Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacology Biochemistry and Behavior, 133, 1–6. https://doi.org/10.1016/j.pbb.2015.03.008.
Article
Google Scholar
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling—a Multidisciplinary Journal, 6(1), 1–55.
Article
Google Scholar
Hulshof, K. F., Lowik, M. R., Kok, F. J., Wedel, M., Brants, H. A., Hermus, R. J., et al. (1991). Diet and other life-style factors in high and low socio-economic groups (Dutch Nutrition Surveillance System). European Journal of Clinical Nutrition, 45(9), 441–450.
PubMed
Google Scholar
Jongkees, B. J., Hommel, B., Kühn, S., & Colzato, L. S. (2015). Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—A review. Journal of Psychiatric Research, 70, 50–57. https://doi.org/10.1016/j.jpsychires.2015.08.014.
Article
PubMed
Google Scholar
Kaasinen, V., Vilkman, H., Hietala, J., Nagren, K., Helenius, H., & Olsson, H., et al. (2000). Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiology of Aging, 21(5), 683–688.
Article
PubMed
Google Scholar
Karlsson, S., Nyberg, L., Karlsson, P., Fischer, H., Thilers, P., & Macdonald, S., et al. (2009). Modulation of striatal dopamine D1 binding by cognitive processing. Neuroimage, 48(2), 398–404. https://doi.org/10.1016/j.neuroimage.2009.06.030.
Article
PubMed
Google Scholar
Kvetnansky, R., Sabban, E. L., & Palkovits, M. (2009). Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiol Rev, 89(2), 535–606. https://doi.org/10.1152/physrev.00042.2006.
Article
Google Scholar
Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: When “good” indicators are bad and “bad” indicators are good. Psychological Methods, 4(2), 192–211.
Article
Google Scholar
Magill, R. A., Waters, W. F., Bray, G. A., Volaufova, J., Smith, S. R., & Lieberman, H. R., et al. (2003). Effects of tyrosine, phentermine, caffeine D-amphetamine, and placebo on cognitive and motor performance deficits during sleep deprivation. Nutritional Neuroscience, 6(4), 237–246. https://doi.org/10.1080/1028415031000120552.
Article
PubMed
Google Scholar
Mahoney, C. R., Castellani, J., Kramer, F. M., Young, A., & Lieberman, H. R. (2007). Tyrosine supplementation mitigates working memory decrements during cold exposure. Psychology & Behavior, 92(4), 575–582. https://doi.org/10.1016/j.physbeh.2007.05.003.
Article
Google Scholar
McCallum, R. C., Browne, M. W., & Cai, L. (2006). Testing differences between nested covariance structure models: Power analysis and null hypotheses. Psychological Methods, 11(1), 19–35.
Article
Google Scholar
Muthen, L. K., & Muthen, B. O. (2010). MPlus user’s guide. Los Angeles: Muthen & Muthen.
Google Scholar
O’Brien, C., Mahoney, C., Tharion, W. J., Sils, I. V., & Castellani, J. W. (2007). Dietary tyrosine benefits cognitive and psychomotor performance during body cooling. Psychology & Behavior, 90(2–3), 301–307. https://doi.org/10.1016/j.physbeh.2006.09.027.
Article
Google Scholar
Palinkas, L. A., Reedy, K. R., Smith, M., Anghel, M., Steel, G. D., & Reeves, D., et al. (2007). Psychoneuroendocrine effects of combined thyroxine and triiodothyronine versus tyrosine during prolonged Antarctic residence. International Journal of Circumpolar Health, 66(5), 401–417.
Article
PubMed
Google Scholar
Reeves, S., Bench, C., & Howard, R. (2002). Ageing and the nigrostriatal dopaminergic system. International Journal of Geriatric Psychiatry, 17(4), 359–370. https://doi.org/10.1002/gps.606.
Article
PubMed
Google Scholar
Schermelleh-Engel, K., Kerwer, M., & Klein, A. G. (2014). Evaluation of model fit in nonlinear multilevel structural equation modeling. Frontiers in Psychology, 5, 181. https://doi.org/10.3389/fpsyg.2014.00181.
Article
PubMed
PubMed Central
Google Scholar
Seeman, P., Bzowej, N. H., Guan, H. C., Bergeron, C., Becker, L. E., & Reynolds, G. P., et al. (1987). Human brain dopamine receptors in children and aging adults. Synapse (New York, N. Y.), 1(5), 399–404. https://doi.org/10.1002/syn.890010503.
Article
Google Scholar
Shurtleff, D., Thomas, J. R., Ahlers, S. T., & Schrot, J. (1993). Tyrosine ameliorates a cold-induced delayed matching-to-sample performance decrement in rats. Psychopharmacology (Berl), 112(2–3), 228–232.
Article
Google Scholar
Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacology, Biochemistry and Behavior, 47(4), 935–941.
Article
PubMed
Google Scholar
Steenbergen, L., Sellaro, R., Hommel, B., & Colzato, L. S. (2015). Tyrosine promotes cognitive flexibility: Evidence from proactive vs. reactive control during task switching performance. Neuropsychologia, 69, 50–55. https://doi.org/10.1016/j.neuropsychologia.2015.01.022.
Article
PubMed
Google Scholar
Thomas, J. R., Lockwood, P. A., Singh, A., & Deuster, P. A. (1999). Tyrosine improves working memory in a multitasking environment. Pharmacology, Biochemistry and Behavior, 64(3), 495–500.
Article
PubMed
Google Scholar
van de Rest, O., van der Zwaluw, N. L., & de Groot, L. C. (2013). Literature review on the role of dietary protein and amino acids in cognitive functioning and cognitive decline. Amino Acids, 45(5), 1035–1045. https://doi.org/10.1007/s00726-013-1583-0.
Article
PubMed
Google Scholar
Widaman, K. F., & Reise, S. R. (1997). Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. In K. J. Bryant, M. Windle & S. G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance use research (pp. 281–324). Washington, DC: American Psychological Association.
Chapter
Google Scholar