Skip to main content
Log in

Surface and structural effects of pitch and time on global melodic expectancies

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

We investigated how the surface and structural information of pitch and time in melodies contribute to the perceived expectancy of melodic segments. The contour (pitch surface), tonality (pitch structure), rhythm (time surface) and metre (time structure) were preserved or altered in factorial fashion, either for the full length of a melody (Full condition) or only its last phrase (Last condition). Participants (N = 24) with a range of musical training received instructions to rate how expected the second portion of a melody was, having heard its first part. Additionally, instructions varied across blocks to attend selectively to pitch, time, or both. Expectancy ratings for the Last condition were lower than for the Full condition, indicating that ratings truly reflected expectancy (rather than overall goodness, which would predict the opposite). Interestingly, tonality and rhythm contributed to global expectancy ratings, but not contour or metre. Furthermore, listeners were unable to ignore entirely either dimension, but successfully attenuated their influence in accordance with instructions. These findings offer a unique insight into music perception by testing expectancies of melody segments (beyond single-note continuations), factorially varying both the surface and structure of pitch and time, and using a selective attention manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We use these operationalisations to express clearly the within-dimension differences (e.g., contour vs. tonality) and across-dimension similarities (e.g., tonality vs. metre). Thus they are relative classifications and we do not claim they are definitive or prescriptive.

  2. The pitch manipulations are presented in a different order than Prince (2014a)—in that article, the second level was labelled “atonal original contour”, and the third was “contour-violated” (but tonal). The same label reversal applies to the time manipulations.

  3. All eta-squared values are full eta-squared, not partial.

References

  • Barnes, R., & Jones, M. R. (2000). Expectancy, attention, and time. Cognitive Psychology, 41, 254–311.

    Article  PubMed  Google Scholar 

  • Bartlett, J. C., & Dowling, W. J. (1988). Scale structure and similarity of melodies. Music Perception, 5, 285–314.

    Article  Google Scholar 

  • Bauer, A. -K. R., Jaeger, M., Thorne, J. D., Bendixen, A., & Debener, S. (2015). The auditory dynamic attending theory revisited: a closer look at the pitch comparison task. Brain Research, 1626, 198–210. doi:10.1016/j.brainres.2015.04.032

    Article  PubMed  Google Scholar 

  • Bharucha, J. J., & Stoeckig, K. (1986). Reaction time and musical expectancy: priming of chords. Journal of Experimental Psychology: Human Perception and Performance, 12, 403–410.

    PubMed  Google Scholar 

  • Bigand, E. (1997). Perceiving musical stability: the effect of tonal structure, rhythm, and musical expertise. Journal of Experimental Psychology: Human Perception and Performance, 23, 808–822.

    PubMed  Google Scholar 

  • Bigand, E., Madurell, F., Tillmann, B., & Pineau, M. (1999). Effect of global structure and temporal organization on chord processing. Journal of Experimental Psychology: Human Perception and Performance, 25, 184–197.

    Google Scholar 

  • Bigand, E., & Parncutt, R. (1999). Perceiving musical tension in long chord sequences. Psychological Research/Psychologische Forschung, 62, 237–254.

    Article  PubMed  Google Scholar 

  • Bigand, E., & Pineau, M. (1997). Global context effects on musical expectancy. Perception & Psychophysics, 59, 1098–1107.

    Article  Google Scholar 

  • Bigand, E., Poulin, B., Tillmann, B., Madurell, F., & D’Adamo, D. A. (2003). Sensory versus cognitive components in harmonic priming. Journal of Experimental Psychology: Human Perception and Performance, 29, 159–171.

    PubMed  Google Scholar 

  • Bigand, E., & Poulin-Charronnat, B. (2006). Are we “experienced listeners”? A review of the musical capacities that do not depend on formal musical training. Cognition, 100, 100–130.

    Article  PubMed  Google Scholar 

  • Bolger, D., Coull, J. T., & Schön, D. (2014). Metrical rhythm implicitly orients attention in time as indexed by improved target detection and left inferior parietal activation. Journal of Cognitive Neuroscience, 26, 593–605. doi:10.1162/jocn_a_00511

    Article  PubMed  Google Scholar 

  • Bolger, D., Trost, W., & Schön, D. (2013). Rhythm implicitly affects temporal orienting of attention across modalities. Acta Psychologica, 142, 238–244. doi:10.1016/j.actpsy.2012.11.012

    Article  PubMed  Google Scholar 

  • Boltz, M. G. (1989a). Perceiving the end: effects of tonal relationships on melodic completion. Journal of Experimental Psychology: Human Perception and Performance, 15, 749–761.

    PubMed  Google Scholar 

  • Boltz, M. G. (1989b). Rhythm and good endings - effects of temporal structure on tonality judgments. Perception & Psychophysics, 46, 9–17.

    Article  Google Scholar 

  • Boltz, M. G. (1989c). Time judgments of musical endings - effects of expectancies on the filled interval effect. Perception & Psychophysics, 46, 409–418.

    Article  Google Scholar 

  • Boltz, M. G. (1993). The generation of temporal and melodic expectancies during musical listening. Perception & Psychophysics, 53, 585–600.

    Article  Google Scholar 

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.

    Article  PubMed  Google Scholar 

  • Cambouropoulos, E. (2010). The musical surface: Challenging basic assumptions. Musicae Scientiae, 131-147.

  • Collins, T., Tillmann, B., Barrett, F. S., Delbé, C., & Janata, P. (2014). A combined model of sensory and cognitive representations underlying tonal expectations in music: from audio signals to behavior. Psychological Review, 121, 33–65. doi:10.1037/a0034695

    Article  PubMed  Google Scholar 

  • Cuddy, L. L., & Cohen, A. J. (1976). Recognition of transposed melodic sequences. Quarterly Journal of Experimental Psychology, 28, 255–270.

    Article  Google Scholar 

  • Cuddy, L. L., Cohen, A. J., & Miller, J. (1979). Melody recognition: the experimental application of musical rules. Canadian Journal of Psychology-Revue Canadienne De Psychologie, 33, 148–157.

    Article  Google Scholar 

  • Cuddy, L. L., & Lunney, C. A. (1995). Expectancies generated by melodic intervals - perceptual judgments of melodic continuity. Perception & Psychophysics, 57, 451–462. doi:10.3758/bf03213071

    Article  Google Scholar 

  • Desain, P., & Honing, H. (2003). The formation of rhythmic categories and metric priming. Perception, 32, 341–365. doi:10.1068/p3370

    Article  PubMed  Google Scholar 

  • Deutsch, D. (Ed.). (2013). The psychology of music (3rd ed.): Academic Press.

  • Dewitt, L. A., & Samuel, A. G. (1990). The role of knowledge-based expectations in music perception - evidence from musical restoration. Journal of Experimental Psychology: General, 119, 123–144.

    Article  Google Scholar 

  • Dowling, W. J. (1973). Rhythmic groups and subjective chunks in memory for melodies. Perception & Psychophysics, 14, 37–40.

    Article  Google Scholar 

  • Dowling, W. J. (1978). Scale and contour: two components of a theory of memory for melodies. Psychological Review, 85, 341–354.

    Article  Google Scholar 

  • Dowling, W. J., & Fujitani, D. S. (1971). Contour, interval, and pitch recognition in memory for melodies. Journal of the Acoustical Society of America, 49, 524–531.

    Article  Google Scholar 

  • Escoffier, N., Sheng, D. Y. J., & Schirmer, A. (2010). Unattended musical beats enhance visual processing. Acta Psychologica, 135, 12–16.

    Article  PubMed  Google Scholar 

  • Farbood, M. M. (2012). A parametric, temporal model of musical tension. Music Perception, 29, 387–428.

    Article  Google Scholar 

  • Graves, J. E., Micheyl, C., & Oxenham, A. J. (2014). Expectations for melodic contours transcend pitch. Journal of Experimental Psychology-Human Perception and Performance, 40, 2338–2347. doi:10.1037/a0038291

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, T. J., & McKeown, J. D. (2001). Capture of attention in selective frequency listening. Journal of Experimental Psychology: Human Perception and Performance, 27, 1197–1210. doi:10.1037//0096-1523.27.5.1197

    PubMed  Google Scholar 

  • Handel, S. (1998). The interplay between metric and figural rhythmic organization. Journal of Experimental Psychology: Human Perception and Performance, 24, 1546–1561.

    Google Scholar 

  • Hébert, S., & Cuddy, L. L. (2002). Detection of metric structure in auditory figural patterns. Perception & Psychophysics, 64, 909–918.

    Article  Google Scholar 

  • Huron, D. (2006). Sweet anticipation: Music and the psychology of expectation. Cambridge: MIT Press.

    Google Scholar 

  • Huron, D., & Margulis, E. H. (2010). Musical expectancy and thrills Handbook of music and emotion: Theory, research, applications. (pp. 575–604): Oxford University Press, New York, NY.

  • Jones, M. R. (1976). Time, our lost dimension - toward a new theory of perception, attention, and memory. Psychological Review, 83, 323–355.

    Article  PubMed  Google Scholar 

  • Jones, M. R. (1987). Dynamic pattern structure in music - recent theory and research. Perception & Psychophysics, 41, 621–634.

    Article  Google Scholar 

  • Jones, M. R., & Boltz, M. G. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.

    Article  PubMed  Google Scholar 

  • Jones, M. R., Boltz, M. G., & Klein, J. M. (1993). Expected endings and judged duration. Memory & Cognition, 21, 646–665.

    Article  Google Scholar 

  • Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319.

    Article  PubMed  Google Scholar 

  • Jones, M. R., & Ralston, J. T. (1991). Some influences of accent structure on melody recognition. Memory & Cognition, 19, 8–20.

    Article  Google Scholar 

  • Jones, M. R., Summerell, L., & Marshburn, E. (1987). Recognizing melodies - a dynamic interpretation. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 39, 89–121.

    Google Scholar 

  • Jones, M. R., & Yee, W. (1997). Sensitivity to time change: the role of context and skill. Journal of Experimental Psychology: Human Perception and Performance, 23, 693–709. doi:10.1037//0096-1523.23.3.693

    Google Scholar 

  • Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to music: the need to consider underlying mechanisms. Behavioral and Brain Sciences, 31, 559–575. doi:10.1017/S0140525X08005293

    Article  PubMed  Google Scholar 

  • Kidd, G., Boltz, M. G., & Jones, M. R. (1984). Some effects of rhythmic context on melody recognition. American Journal of Psychology, 97, 153–173.

    Article  PubMed  Google Scholar 

  • Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York, NY: Oxford University Press.

    Google Scholar 

  • Krumhansl, C. L. (1995). Music psychology and music theory - problems and prospects. Music Theory Spectrum, 17, 53–80. doi:10.1525/mts.1995.17.1.02a00030

    Article  Google Scholar 

  • Krumhansl, C. L. (1997). Effects of perceptual organization and musical form on melodic expectancies. In M. Leman (Ed.), Music, Gestalt, and computing (Vol. 1317, pp. 294-320): Springer Berlin Heidelberg. doi:10.1007/BFb0034122

  • Krumhansl, C. L., & Cuddy, L. L. (2010). A theory of tonal hierarchies in music. In M. R. Jones, R. R. Fay & A. N. Popper (Eds.), Music perception. Springer handbook of auditory research (pp. 51-87). New York, NY: Springer Science. doi:10.1007/978-1-4419-6114-3_1

  • Krumhansl, C. L., Louhivuori, J., Toiviainen, P., Jarvinen, T., & Eerola, T. (1999). Melodic expectation in finnish spiritual folk hymns: convergence of statistical, behavioral, and computational approaches. Music Perception, 17, 151–195.

    Article  Google Scholar 

  • Krumhansl, C. L., & Schmuckler, M. A. (1986, July). Key-finding in music: An algorithm based on pattern matching to tonal hierarchies. Paper presented at the 19th Annual Meeting of the Society of Mathematical Psychology, Cambridge, MA.

  • Lamont, A., & Dibben, N. (2001). Motivic structure and the perception of similarity. Music Perception, 18, 245–274.

    Article  Google Scholar 

  • Large, E. W., & Jones, M. R. (1999). The dynamics of attending: how people track time-varying events. Psychological Review, 106, 119–159.

    Article  Google Scholar 

  • Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1–37.

    Article  Google Scholar 

  • Larson, S. (2004). Musical forces and melodic expectations: comparing computer models and experimental results. Music Perception, 21, 457–498. doi:10.1525/mp.2004.21.4.457

    Article  Google Scholar 

  • Lerdahl, F., & Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • London, J. (2004). Hearing in time: Psychological aspects of musical meter. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Margulis, E. H. (2005). A model of melodic expectation. Music Perception, 22, 663–713. doi:10.1525/mp.2005.22.4.663

    Article  Google Scholar 

  • Marmel, F., Tillmann, B., & Delbe, C. (2010). Priming in melody perception: tracking down the strength of cognitive expectations. Journal of Experimental Psychology: Human Perception and Performance, 36, 1016–1028. doi:10.1037/a0018735

    PubMed  Google Scholar 

  • Mathworks, (2004). Matlab. Natick, MA: The Mathworks Inc.

    Google Scholar 

  • Matsunaga, R., & Abe, J. I. (2005). Cues for key perception of a melody: pitch set alone? Music Perception, 23, 153–164.

    Article  Google Scholar 

  • Meyer, L. B. (1956). Emotion and meaning in music. Chicago: University of Chicago Press.

    Google Scholar 

  • Narmour, E. (1990). The analysis and cognition of basic melodic structures: The implication-realization model. Chicago, IL, US: University of Chicago Press.

    Google Scholar 

  • Narmour, E. (1992). The analysis and cognition of melodic complexity: The implication-realization model: University of Chicago Press.

  • Palmer, C., & Krumhansl, C. L. (1987a). Independent temporal and pitch structures in determination of musical phrases. Journal of Experimental Psychology: Human Perception and Performance, 13, 116–126.

    PubMed  Google Scholar 

  • Palmer, C., & Krumhansl, C. L. (1987b). Pitch and temporal contributions to musical phrase perception - effects of harmony, performance timing, and familiarity. Perception & Psychophysics, 41, 505–518.

    Article  Google Scholar 

  • Pearce, M. T., & Wiggins, G. A. (2006). Expectation in melody: the influence of context and learning. Music Perception, 23, 377–405.

    Article  Google Scholar 

  • Pearce, M. T., & Wiggins, G. A. (2012). Auditory expectation: the information dynamics of music perception and cognition. Topics in Cognitive Science, 4, 625–652. doi:10.1111/j.1756-8765.2012.01214.x

    Article  PubMed  Google Scholar 

  • Pfordresher, P. Q. (2008). Auditory feedback in music performance: the role of transition-based similarity. Journal of Experimental Psychology: Human Perception and Performance, 34, 708–725.

    PubMed  Google Scholar 

  • Povel, D. J. (1981). Internal representation of simple temporal patterns. Journal of Experimental Psychology: Human Perception and Performance, 7, 3–18.

    PubMed  Google Scholar 

  • Povel, D. J., & Essens, P. (1985). Perception of temporal patterns. Music Perception, 2, 411–440.

    Article  Google Scholar 

  • Prince, J. B. (2011). The integration of stimulus dimensions in the perception of music. Quarterly Journal of Experimental Psychology, 64, 2125–2152. doi:10.1080/17470218.2011.573080

    Article  Google Scholar 

  • Prince, J. B. (2014a). Contributions of pitch contour, tonality, rhythm, and meter to melodic similarity. Journal of Experimental Psychology: Human Perception and Performance, 40, 2319–2337. doi:10.1037/a0038010

    PubMed  Google Scholar 

  • Prince, J. B. (2014b). Pitch structure, but not selective attention, affects accent weightings in metrical grouping. Journal of Experimental Psychology: Human Perception and Performance, 40, 2073–2090. doi:10.1037/a0037730

    PubMed  Google Scholar 

  • Prince, J. B., & Schmuckler, M. A. (2014). The tonal-metric hierarchy: a corpus analysis. Music Perception, 31, 254–270. doi:10.1525/MP.2014.31.3.254

    Article  Google Scholar 

  • Prince, J. B., Schmuckler, M. A., & Thompson, W. F. (2009). The effect of task and pitch structure on pitch-time interactions in music. Memory & Cognition, 37, 368–381. doi:10.3758/MC.37.3.368

    Article  Google Scholar 

  • Repp, B. H. (1992). Probing the cognitive representation of musical time - structural constraints on the perception of timing perturbations. Cognition, 44, 241–281.

    Article  PubMed  Google Scholar 

  • Repp, B. H. (1995). Detectability of duration and intensity increments in melody tones - a partial connection between music perception and performance. Perception & Psychophysics, 57, 1217–1232.

    Article  Google Scholar 

  • Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5, 35–53. doi:10.1080/17459737.2011.573676

    Article  Google Scholar 

  • Rohrmeier, M., & Koelsch, S. (2012). Predictive information processing in music cognition. A critical review. International Journal of Psychophysiology, 83, 164–175. doi:10.1016/j.ijpsycho.2011.12.010

    Article  PubMed  Google Scholar 

  • Ross, J., & Houtsma, A. J. M. (1994). Discrimination of auditory temporal patterns. Perception & Psychophysics, 56, 19–26. doi:10.3758/bf03211687

    Article  Google Scholar 

  • Scharf, B., Quigley, S., Aoki, C., Peachey, N., & Reeves, A. (1987). Focused auditory attention and frequency-selectivity. Perception & Psychophysics, 42, 215–223. doi:10.3758/bf03203073

    Article  Google Scholar 

  • Schellenberg, E. G. (1996). Expectancy in melody: tests of the implication realization model. Cognition, 58, 75–125.

    Article  PubMed  Google Scholar 

  • Schellenberg, E. G. (1997). Simplifying the implication-realization model of melodic expectancy. Music Perception, 14, 295–318.

    Article  Google Scholar 

  • Schellenberg, E. G. (2001). Asymmetries in the discrimination of musical intervals: going out-of-tune is more noticeable than going in-tune. Music Perception, 19, 223–248.

    Article  Google Scholar 

  • Schmuckler, M. A. (1989). Expectation in music - investigation of melodic and harmonic processes. Music Perception, 7, 109–150.

    Article  Google Scholar 

  • Schmuckler, M. A. (1990). The performance of global expectations. Psychomusicology Special Edition: Music expectancy, 9, 122–147.

    Article  Google Scholar 

  • Schmuckler, M. A. (1997). Expectancy effects in memory for melodies. Canadian Journal of Experimental Psychology, 51, 292–305.

    Article  PubMed  Google Scholar 

  • Schmuckler, M. A. (2009). Components of melodic processing. In S. Hallam, I. Cross, & M. Thaut (Eds.), Oxford handbook of music psychology (pp. 93–106). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Schmuckler, M. A., & Boltz, M. G. (1994). Harmonic and rhythmic influences on musical expectancy. Perception & Psychophysics, 56, 313–325.

    Article  Google Scholar 

  • Schubert, E., & Stevens, C. (2006). The effect of implied harmony, contour and musical expertise on judgments of similarity of familiar melodies. Journal of New Music Research, 35, 161–174. doi:10.1080/09298210600835000

    Article  Google Scholar 

  • Schulkind, M. D. (1999). Long-term memory for temporal structure: evidence from the identification of well-known and novel songs. Memory & Cognition, 27, 896–906.

    Article  Google Scholar 

  • Serafine, M. L., Glassman, N., & Overbeeke, C. (1989). The cognitive reality of hierarchic structure in music. Music Perception, 6, 397–430.

    Article  Google Scholar 

  • Stalinski, S. M., & Schellenberg, E. G. (2010). Shifting perceptions: developmental changes in judgments of melodic similarity. Developmental Psychology, 46, 1799–1803.

    Article  PubMed  Google Scholar 

  • Steinbeis, N., Koelsch, S., & Sloboda, J. A. (2006). The role of harmonic expectancy violations in musical emotions: evidence from subjective, physiological, and neural responses. Journal of Cognitive Neuroscience, 18, 1380–1393.

    Article  PubMed  Google Scholar 

  • Temperley, D. (2008). A probabilistic model of melody perception. Cognitive Science, 32, 418–444. doi:10.1080/03640210701864089

    Article  PubMed  Google Scholar 

  • Temperley, D., & Marvin, E. W. (2008). Pitch-class distribution and the identification of key. Music Perception, 25, 193–212.

    Article  Google Scholar 

  • Thompson, W. F., Cuddy, L. L., & Plaus, C. (1997). Expectancies generated by melodic intervals: evaluation of principles of melodic implication in a melody-completion task. Perception & Psychophysics, 59, 1069–1076. doi:10.3758/bf03205521

    Article  Google Scholar 

  • Tillmann, B., & Lebrun-Guillaud, G. (2006). Influence of tonal and temporal expectations on chord processing and on completion judgments of chord sequences. Psychological Research, 70, 345–358.

    Article  PubMed  Google Scholar 

  • Tillmann, B., & Marmel, F. (2013). Musical expectations within chord sequences: facilitation due to tonal stability without closure effects. Psychomusicology: Music, Mind, and Brain, 23, 1–5.

    Article  Google Scholar 

  • Tillmann, B., Poulin-Charronnat, B., & Bigand, E. (2014). The role of expectation in music: from the score to emotions and the brain. Wiley Interdisciplinary Reviews: Cognitive Science, 5, 105–113.

    PubMed  Google Scholar 

  • Zurbriggen, E. L., Fontenot, D. L., & Meyer, D. E. (2006). Representation and execution of vocal motor programs for expert singing of tonal melodies. Journal of Experimental Psychology: Human Perception and Performance, 32, 944–963. doi:10.1037/0096-1523.32.4.944

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon B. Prince.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prince, J.B., Loo, LM. Surface and structural effects of pitch and time on global melodic expectancies. Psychological Research 81, 255–270 (2017). https://doi.org/10.1007/s00426-015-0737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-015-0737-y

Keywords

Navigation