Imagined own-body transformations during passive self-motion

Abstract

Spatial perspective taking is a crucial social skill that underlies many of our everyday interactions. Previous studies have suggested that spatial perspective taking is an embodied process that involves the integration of both motor and proprioceptive information. Given the importance of vestibular signals for own-body perception, mental own-body imagery, and bodily self-consciousness, in the present study we hypothesized that vestibular stimulation due to passive own-body displacements should also modulate spatial perspective taking. Participants performed an own-body transformation task while being passively rotated in a clockwise or counter-clockwise direction on a human motion platform. A congruency effect was observed, reflected in faster reaction times if the implied mental body rotation direction matched the actual rotation direction of the chair. These findings indicate that vestibular stimulation modulates and facilitates mental perspective taking, thereby highlighting the importance of integrating multisensory bodily information for spatial perspective taking.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    As different processes are involved in mental body transformations (Gardner & Potts, 2011; May & Wendt, 2012) and subjects often report different strategies (Kessler & Wang, 2012) we have decided in this manuscript to use the term "mental body transformation" instead of own body transformation.

  2. 2.

    Post hoc tests did not reveal significant differences between stimuli implying a CW vs. a CCW rotation (t(17) = 1.4, p = 0.18 for CW chair rotations, t(17) = −1.6, p = 0.14 for CCW chair rotations), indicating that although rotation direction did affect mental transformation, it did not result in a complete reversal of the directionality effects. This could be partly related to the fact of spatial compatibility effects partly underlying the MBT task (Gardner & Potts, 2011; May & Wendt, 2012) and strategy differences between participants (i.e., egocentric vs. allocentric strategy; see also below).

References

  1. Amorim, M. A., Isableu, B., & Jarraya, M. (2006). Embodied spatial transformations: “body analogy” for the mental rotation of objects. Journal of Experimental Psychology: General, 135(3), 327–347.

    Article  Google Scholar 

  2. Angelaki, D. E., & Cullen, K. E. (2008). Vestibular system: the many facets of a multimodal sense. Annual Review of Neuroscience, 31, 125–150.

    Article  PubMed  Google Scholar 

  3. Arzy, S., Thut, G., Mohr, C., Michel, C. M., & Blanke, O. (2006). Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. Journal of Neuroscience, 26(31), 8074–8081.

    Article  PubMed  Google Scholar 

  4. Avraamides, M. N., & Kelly, J. W. (2008). Multiple systems of spatial memory and action. Cognitive Processes, 9(2), 93–106.

    Article  Google Scholar 

  5. Blajenkova, O., Kozhevnikov, M., & Motes, A. M. (2006). Object-spatial imagery: a new self-report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239–263.

    Article  Google Scholar 

  6. Blanke, O. (2012). Multisensory brain mechanisms of bodily self-consciousness. Nature Reviews Neuroscience, 13(8), 556–571.

    PubMed  Google Scholar 

  7. Blanke, O., Ionta, S., Fornari, E., Mohr, C., & Maeder, P. (2010). Mental imagery for full and upper human bodies: common right hemisphere activations and distinct extrastriate activations. Brain Topography, 23(3), 321–332.

    Article  PubMed  Google Scholar 

  8. Blanke, O., Mohr, C., Michel, C. M., Pascual-Leone, A., Brugger, P., Seeck, M., et al. (2005). Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction. Journal of Neuroscience, 25(3), 550–557.

    Article  PubMed  Google Scholar 

  9. Creem-Regehr, S. H. (2003). Updating space during imagined self- and array translations. Memory and Cognition, 31(6), 941–952.

    Article  PubMed  Google Scholar 

  10. Creem-Regehr, S. H., Neil, J. A., & Yeh, H. J. (2007). Neural correlates of two imagined egocentric transformations. Neuroimage, 35(2), 916–927.

    Article  PubMed  Google Scholar 

  11. Easton, R. D., & Sholl, M. J. (1995). Object-array structure, frames of reference, and retrieval of spatial knowledge. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21(2), 483–500.

    Article  PubMed  Google Scholar 

  12. Falconer, C. J., & Mast, F. W. (2012). Balancing the mind. Experimental Psychology, 59(6), 332–339.

    Google Scholar 

  13. Ferre, E. R., Bottini, G., & Haggard, P. (2011). Vestibular modulation of somatosensory perception. European Journal of Neuroscience, 34(8), 1337–1344.

    Article  PubMed  Google Scholar 

  14. Figliozzi, F., Guariglia, P., Silvetti, M., Siegler, I., & Doricchi, F. (2005). Effects of vestibular rotatory accelerations on covert attentional orienting in vision and touch. Journal of Cognitive Neuroscience, 17(10), 1638–1651.

    Article  PubMed  Google Scholar 

  15. Fourkas, A. D., Ionta, S., & Aglioti, S. M. (2006). Influence of imagined posture and imagery modality on corticospinal excitability. Behavioral Brain Research, 168(2), 190–196.

    Article  Google Scholar 

  16. Gardner, M. R., & Potts, R. (2011). Domain general mechanisms account for imagined transformations of whole body perspective. Acta Psychologica, 137(3), 371–381.

    Article  PubMed  Google Scholar 

  17. Huttenlocher, J., & Presson, C. C. (1979). The coding and transformation of spatial information. Cognitive Psychology, 11(3), 375–394.

    Article  PubMed  Google Scholar 

  18. Ionta, S., Gassert, R., & Blanke, O. (2011a). Multi-sensory and sensorimotor foundation of bodily self-consciousness—an interdisciplinary approach. Frontiers in Psychology, 2, 383.

    PubMed Central  Article  PubMed  Google Scholar 

  19. Ionta, S., Heydrich, L., Lenggenhager, B., Mouthon, M., Fornari, E., Chapuis, D., et al. (2011b). Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron, 70(2), 363–374.

    Article  PubMed  Google Scholar 

  20. Karnath, H. O., & Dieterich, M. (2006). Spatial neglect—a vestibular disorder? Brain, 129(Pt 2), 293–305.

    PubMed  Google Scholar 

  21. Keehner, M., Guerin, S. A., Miller, M. B., Turk, D. J., & Hegarty, M. (2006). Modulation of neural activity by angle of rotation during imagined spatial transformations. Neuroimage, 33(1), 391–398.

    Article  PubMed  Google Scholar 

  22. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1989). Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220.

    Article  Google Scholar 

  23. Kessler, K., & Rutherford, H. (2010). The two forms of visuo-spatial perspective taking are differently embodied and subserve different spatial prepositions. Frontiers in Psychology, 1, 213.

    PubMed Central  PubMed  Google Scholar 

  24. Kessler, K., & Thomson, L. A. (2010). The embodied nature of spatial perspective taking: embodied transformation versus sensorimotor interference. Cognition, 114(1), 72–88.

    Article  PubMed  Google Scholar 

  25. Kessler, K., & Wang, H. (2012). Spatial perspective taking is an embodied process, but not for everyone in the same way: differences predicted by sex and social skills score. Spatial Cognition and Computation: An Interdisciplinary Journal, 12, 133–158.

    Article  Google Scholar 

  26. Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory and Cognition, 29(5), 745–756.

    Article  PubMed  Google Scholar 

  27. Lackner, J. R., & Graybiel, A. (1977). Somatosensory motion after-effect following earth-horizontal rotation about the Z-axis: a new illusion. Aviation, Space and Environmental Medicine, 48(6), 501–502.

    Google Scholar 

  28. Lenggenhager, B., Lopez, C., & Blanke, O. (2008). Influence of galvanic vestibular stimulation on egocentric and object-based mental transformations. Experimental Brain Research, 184(2), 211–221.

    Article  PubMed  Google Scholar 

  29. Lopez, C., Bachofner, C., Mercier, M., & Blanke, O. (2009). Gravity and observer’s body orientation influence the visual perception of human body postures. Journal of Vision, 9(5), 1.1–14.

    Google Scholar 

  30. Lopez, C., & Blanke, O. (2011). The thalamocortical vestibular system in animals and humans. Brain Research Reviews, 67(1–2), 119–146.

    Article  PubMed  Google Scholar 

  31. Lopez, C., Halje, P., & Blanke, O. (2008). Body ownership and embodiment: vestibular and multisensory mechanisms. Clinical Neurophysiology, 38(3), 149–161.

    Article  PubMed  Google Scholar 

  32. Lopez, C., Heydrich, L., Seeck, M., & Blanke, O. (2010a). Abnormal self-location and vestibular vertigo in a patient with right frontal lobe epilepsy. Epilepsy and Behavior, 17(2), 289–292.

    Article  PubMed  Google Scholar 

  33. Lopez, C., Lenggenhager, B., & Blanke, O. (2010b). How vestibular stimulation interacts with illusory hand ownership. Consciousness and Cognition, 19(1), 33–47.

    Article  PubMed  Google Scholar 

  34. May, M. (2004). Imaginal perspective switches in remembered environments: transformation versus interference accounts. Cognitive Psychology, 48(2), 163–206.

    Article  PubMed  Google Scholar 

  35. May, M., & Wendt, M. (2012). Separating mental transformations and spatial compatibility effects in the own body transformation task. Cognitive Processing, 13(Suppl 1), S257–S260.

    Article  PubMed  Google Scholar 

  36. Mohr, C., Blanke, O., & Brugger, P. (2006). Perceptual aberrations impair mental own-body transformations. Behavioral Neuroscience, 120(3), 528–534.

    Article  PubMed  Google Scholar 

  37. Moll, H., & Meltzoff, A. N. (2011). How does it look? Level 2 perspective-taking at 36 months of age. Child Development, 82(2), 661–673.

    Article  PubMed  Google Scholar 

  38. Parsons, L. M. (1987). Imagined spatial transformation of one’s body. Journal of Experimental Psychology: General, 116(2), 172–191.

    Article  Google Scholar 

  39. Petkova, V. I., Bjornsdotter, M., Gentile, G., Jonsson, T., Li, T. Q., & Ehrsson, H. H. (2011). From part- to whole-body ownership in the multisensory brain. Current Biology, 21(13), 1118–1122.

    Article  PubMed  Google Scholar 

  40. Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 15(6), 1157–1165.

    Article  PubMed  Google Scholar 

  41. Rieser, J. J., Garing, A. E., & Young, M. F. (1994). Imagery, action, and young children’s spatial orientation: it’s not being there that counts, it’s what one has in mind. Child Development, 65(5), 1262–1278.

    Article  PubMed  Google Scholar 

  42. Rieser, J. J., Guth, D. A., & Hill, E. W. (1986). Sensitivity to perspective structure while walking without vision. Perception, 15(2), 173–188.

    Article  PubMed  Google Scholar 

  43. Shinder, M. E., & Taube, J. S. (2010). Differentiating ascending vestibular pathways to the cortex involved in spatial cognition. Journal of Vestibular Research, 20(1), 3–23.

    PubMed  Google Scholar 

  44. Sirigu, A., & Duhamel, J. R. (2001). Motor and visual imagery as two complementary but neurally dissociable mental processes. Journal of Cognitive Neuroscience, 13(7), 910–919.

    Article  PubMed  Google Scholar 

  45. Sodian, B., Thoermer, C., & Metz, U. (2007). Now I see it but you don’t: 14-month-olds can represent another person’s visual perspective. Developmental Science, 10(2), 199–204.

    Article  PubMed  Google Scholar 

  46. Tadi, T., Overney, L. S., & Blanke, O. (2009). Three sequential brain activations encode mental transformations of upright and inverted human bodies: a high resolution evoked potential study. Neuroscience, 159(4), 1316–1325.

    Article  PubMed  Google Scholar 

  47. Tversky, B., & Hard, B. M. (2009). Embodied and disembodied cognition: spatial perspective-taking. Cognition, 110(1), 124–129.

    Article  PubMed  Google Scholar 

  48. van Elk, M., & Blanke, O. (2012). Balancing bistable perception during self-motion. Experimental Brain Research, 222(3), 219–228.

    Google Scholar 

  49. Viswanathan, S., Fritz, C., & Grafton, S. T. (2012). Telling the right hand from the left hand: multisensory integration, not motor imagery, solves the problem. Psychological Science, 23(6), 598–607.

    Article  PubMed  Google Scholar 

  50. Vogeley, K., May, M., Ritzl, A., Falkai, P., Zilles, K., & Fink, G. R. (2004). Neural correlates of first-person perspective as one constituent of human self-consciousness. Journal of Cognitive Neuroscience, 16(5), 817–827.

    Article  PubMed  Google Scholar 

  51. Wraga, M. (2003). Thinking outside the body: an advantage for spatial updating during imagined versus physical self-rotation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 29(5), 993–1005.

    Article  PubMed  Google Scholar 

  52. Wraga, M., Shephard, J. M., Church, J. A., Inati, S., & Kosslyn, S. M. (2005). Imagined rotations of self versus objects: an fMRI study. Neuropsychologia, 43(9), 1351–1361.

    Article  PubMed  Google Scholar 

  53. Zacks, J. M., & Michelon, P. (2005). Transformations of visuospatial images. Behavioral and Cognitive Neuroscience Reviews, 4(2), 96–118.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by a Marie Curie Grant (IEF grant 252713), the Virtual Embodiment and Robotic Re-Embodiment grant within the European FP7 framework (VERE grant 257695) and the Swiss Science Foundation (SINERGIA CRSII1-125135/1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michiel van Elk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Elk, M., Blanke, O. Imagined own-body transformations during passive self-motion. Psychological Research 78, 18–27 (2014). https://doi.org/10.1007/s00426-013-0486-8

Download citation

Keywords

  • Vestibular Stimulation
  • Galvanic Vestibular Stimulation
  • Response Hand
  • Mental Transformation
  • Angular Disparity