Skip to main content
Log in

Movement kinematics affect action prediction: comparing human to non-human point-light actions

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The influence of movement kinematics on the accuracy of predicting the time course of another individual’s actions was studied. A human point-light shape was animated with human movement (natural condition) and with artificial movement that was more uniform regarding velocity profiles and trajectories (artificial condition). During brief occlusions, the participants predicted the actions in order to judge after occlusion whether the actions were continued coherently in time or shifted to an earlier or later frame. Error rates and reaction times were increased in the artificial compared to the natural condition. The findings suggest a perceptual advantage for movement with a human velocity profile, corresponding to the notion of a close interaction between observed and executed movement. The results are discussed in the framework of the simulation account and alternative interpretations are provided on the basis of correlations between the velocity profiles of natural and artificial movements with prediction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aglioti, S., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.

    Article  PubMed  Google Scholar 

  • Ahlstrom, V., Blake, R., & Ahlstrom, U. (1997). Perception of biological motion. Perception, 26(12), 1539–1548.

    Article  PubMed  Google Scholar 

  • Bisio, A., Stucchi, N., Jacono, M., Fadiga, L., & Pozzo, T. (2010). Automatic versus voluntary motor imitation: effect of visual context and stimulus velocity. PLoS ONE, 5(10), e13506.

    Article  PubMed  Google Scholar 

  • Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.

    Article  PubMed  Google Scholar 

  • Bubic, A., von Cramon, D., & Schubotz, R. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4, doi:0.3389/fnhum.2010.00025.

  • Buccino, G., Lui, F., Canessa, N., Patteri, I., Lagravinese, G., Benuzzi, F., et al. (2004). Neural circuits involved in the recognition of actions performed by nonconspecifics: an FMRI study. Journal of Cognitive Neuroscience, 16(1), 114–126.

    Article  PubMed  Google Scholar 

  • Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16(19), 1905–1910.

    Article  PubMed  Google Scholar 

  • Casile, A., Dayan, E., Caggiano, V., Hendler, T., Flash, T., & Giese, M. A. (2010). Neuronal encoding of human kinematic invariants during action observation. Cerebral Cortex, 20(7), 1647–1655.

    Article  PubMed  Google Scholar 

  • Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16(1), 69–74.

    Article  PubMed  Google Scholar 

  • Chaminade, T., Hodgins, J., & Kawato, M. (2007). Anthropomorphism influences perception of computer-animated characters’ actions. Social Cognitive and Affective Neuroscience, 2(3), 206–216.

    Article  PubMed  Google Scholar 

  • Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31(3), 1257–1267.

    Article  PubMed  Google Scholar 

  • Cross, E., Kraemer, D., Hamilton, A., Kelley, W., & Grafton, S. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19(2), 315–326.

    Article  PubMed  Google Scholar 

  • Cross, E. S., Liepelt, R., Hamilton, A Fd C, Parkinson, J., Ramsey, R., Stadler, W., et al. (2011). Robotic movement preferentially engages the action observation network. Human Brain Mapping,. doi:10.1002/hbm.21361.

    Google Scholar 

  • Dayan, E., Casile, A., Levit-Binnun, N., Giese, M., Hendler, T., & Flash, T. (2007). Neural representations of kinematic laws of motion: evidence for action-perception coupling. Proceedings of the National academy of Sciences of the United States of America, 104(51), 20582–20587.

    Article  PubMed  Google Scholar 

  • De’Sperati, C., & Viviani, P. (1997). The relationship between curvature and velocity in two-dimensional smooth pursuit eye movements. Journal of Neuroscience, 17(10), 3932–3945.

    PubMed  Google Scholar 

  • Diersch, N., Cross, E. S., Stadler, W., Schütz-Bosbach, S., & Rieger, M. (2011). Representing others' actions: the role of expertise in the aging mind. Psychological Research. doi:10.1007/s00426-011-0404-x.

  • Flash, T., & Hogan, N. (1985). The coordination of arm movements—an experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 1688–1703.

    PubMed  Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593–609.

    Article  PubMed  Google Scholar 

  • Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501.

    Article  PubMed  Google Scholar 

  • Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4(3), 179–192.

    Article  PubMed  Google Scholar 

  • Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. Neuroimage, 36(Suppl 2), T22–T32.

    Article  PubMed  Google Scholar 

  • Grafton, S., & Hamilton, A. (2007). Evidence for a distributed hierarchy of action representation in the brain. Human Movement Science, 26(4), 590–616.

    Article  PubMed  Google Scholar 

  • Hicheur, H., Vieilledent, S., Richardson, M., Flash, T., & Berthoz, A. (2005). Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements. Experimental Brain Research, 162(2), 145–154.

    Article  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The Theory of Event Coding (TEC): a framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878.

    Article  PubMed  Google Scholar 

  • Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: a review of the findings. Psychonomic Bulletin & Review, 12(5), 822–851.

    Article  Google Scholar 

  • Ivanenko, Y., Grasso, R., Macellari, V., & Lacquaniti, F. (2002). Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity. Journal of Neurophysiology, 87(6), 3070–3089.

    PubMed  Google Scholar 

  • Jarraya, M., Amorim, M., & Bardy, B. (2005). Optical flow and viewpoint change modulate the perception and memorization of complex motion. Perception & Psychophysics, 67(6), 951–961.

    Article  Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage, 14(1), S103–S109.

    Article  PubMed  Google Scholar 

  • Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201–211.

    Article  Google Scholar 

  • Kandel, S., Orliaguet, J. P., & BoÎ, L. J. (2000). Detecting anticipatory events in handwriting movements. Perception, 29(8), 953–964.

    Article  PubMed  Google Scholar 

  • Kilner, J., Friston, K., & Frith, C. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159–166.

    Article  PubMed  Google Scholar 

  • Kilner, J. M., Vargas, C., Duval, S., Blakemore, S. J., & Sirigu, A. (2004). Motor activation prior to observation of a predicted movement. Nature Neuroscience, 7(12), 1299–1301.

    Article  PubMed  Google Scholar 

  • Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54(1–3), 115–130.

    Article  PubMed  Google Scholar 

  • Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology—Human Perception and Performance, 31(1), 210–220.

    Google Scholar 

  • Nijhawan, R. (2008). Visual prediction: psychophysics and neurophysiology of compensation for time delays. Behavioral and Brain Sciences, 31(2), 179–198.

    PubMed  Google Scholar 

  • Oram, M., & Perrett, D. (1996). Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. Journal of Neurophysiology, 76(1), 109–129.

    PubMed  Google Scholar 

  • Parkinson, J., Springer, A., & Prinz, W. (2012). Before, during and after you disappear: effects of timing and dynamic updating of the real-time action simulation of human motions. Psychological Research. doi:10.1007/s00426-012-0422-3.

  • Pozzo, T., Papaxanthis, C., Petit, J., Schweighofer, N., & Stucchi, N. (2006). Kinematic features of movement tunes perception and action coupling. Behavioural Brain Research, 169(1), 75–82.

    Article  PubMed  Google Scholar 

  • Press, C., Cook, J., Blakemore, S. J., & Kilner, J. (2011). Dynamic modulation of human motor activity when observing actions. Journal of Neuroscience, 31(8), 2792–2800.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.

    Article  Google Scholar 

  • Prinz, W., & Rapinett, G. (2008). Filling the gap: dynamic representation of occluded action. In F. Morganti, C. A. & G. Riva (Eds.), Enacting intersubjectivity: A cognitive and social perspective on the study of interactions (pp. 223-236). Amsterdam: IOS Press.

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Reviews in Neuroscience, 27, 169–192.

    Article  Google Scholar 

  • Sarkheil, P., Vuong, Q., Bulthoff, H., & Noppeney, U. (2008). The integration of higher order form and motion by the human brain. Neuroimage, 42(4), 1529–1536.

    Google Scholar 

  • Saygin, A. P., & Stadler, W. (2012). The role of appearance and motion in action prediction. Psychological Research. doi:10.1007/s00426-012-0426-z.

  • Saygin, A. P., Chaminade, T., Ishiguro, H., Driver, J., & Frith, C. (2011). The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Social Cognitive and Affective Neuroscience,. doi:10.1093/scan/nsr025.

    PubMed  Google Scholar 

  • Schippers, M. B., & Keysers, C. (2011). Mapping the flow of information within the putative mirror neuron system during gesture observation. Neuroimage, 57(1), 37–44.

    Article  PubMed  Google Scholar 

  • Shiffrar, M., & Pinto, J. (2002). The visual analysis of bodily motion. In W. Prinz & B. Hommel (Eds.), Common mechanisms in perception and action. Oxford: Oxford University Press.

    Google Scholar 

  • Sparenberg, P., Springer, A., & Prinz, W. (2011). Predicting others’ actions: evidence for a constant time delay in action simulation. Psychological Research, 76(1), 41–49.

    Article  PubMed  Google Scholar 

  • Springer, A., & Prinz, W. (2010). Action semantics modulate action prediction. Quarterly Journal of Experimental Psychology, 63(11), 2141–2158.

    Article  Google Scholar 

  • Stadler, W., Schubotz, R., von Cramon, D., Springer, A., Graf, M., & Prinz, W. (2011). Predicting and memorizing observed action: differential premotor cortex involvement. Human Brain Mapping, 32(5), 677–687.

    Article  PubMed  Google Scholar 

  • Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., et al. (2001). I know what you are doing? A neurophysiological study. Neuron, 31(1), 155–165.

    Article  PubMed  Google Scholar 

  • Viviani, P., Baud-Bovy, G., & Redolfi, M. (1997). Perceiving and tracking kinesthetic stimuli: further evidence of motor-perceptual interactions. Journal of Experimental Psychology—Human Perception and Performance, 23(4), 1232–1252.

    Article  PubMed  Google Scholar 

  • Viviani, P., & Flash, T. (1995). Minimum-Jerk, 2/3-power law, and isochrony—converging approaches to movement planning. Journal of Experimental Psychology—Human Perception and Performance, 21(1), 32–53.

    Article  PubMed  Google Scholar 

  • Viviani, P., & Stucchi, N. (1992). Biological movements look uniform: evidence of motor-perceptual interactions. Journal of Experimental Psychology—Human Perception and Performance, 18(3), 603–623.

    Article  PubMed  Google Scholar 

  • Watanabe, K. (2008). Behavioral speed contagion: automatic modulation of movement timing by observation of body movements. Cognition, 106(3), 1514–1524.

    Article  PubMed  Google Scholar 

  • Wolpert, D., & Flanagan, J. (2001). Motor prediction. Current Biology, 20(11), R729–R732.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Marcus Daum, Erik Türke and Ulrike Riedel for lab assistance. We further thank Ferdinand Tusker for help with the movement analysis and Joachim Hermsdörfer for critical feedback. The first author is grateful to Deutsche Forschungsgemeinschaft (DFG) for financial support of this research (Project: STA 1076/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waltraud Stadler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 158 kb)

Supplementary material 2 (AVI 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, W., Springer, A., Parkinson, J. et al. Movement kinematics affect action prediction: comparing human to non-human point-light actions. Psychological Research 76, 395–406 (2012). https://doi.org/10.1007/s00426-012-0431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-012-0431-2

Keywords

Navigation