Skip to main content
Log in

Tool use and the distalization of the end-effector

  • Original Article
  • Published:
Psychological Research PRPF Aims and scope Submit manuscript

Abstract

We review recent neurophysiological data from macaques and humans suggesting that the use of tools extends the internal representation of the actor’s hand, and relate it to our modeling of the visual control of grasping. We introduce the idea that, in addition to extending the body schema to incorporate the tool, tool use involves distalization of the end-effector from hand to tool. Different tools extend the body schema in different ways, with a displaced visual target and a novel, task-specific processing of haptic feedback to the hand. This distalization is critical in order to exploit the unique functional capacities engendered by complex tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. In the study of imitation (Dautenhahn & Nehaniv, 2002), the correspondence problem for the imitator is to decide how to match end-effectors of the imitatee’s body to its own. We have brains and bodies that allow us to master the use of varied tools, but that rests, for most of us, on early training from caregivers that enables us to learn how to attend to a range of necessary affordances and master a set of basic uses of our hands and body, providing the effectivities which are dual to the affordances provided by perception (Turvey, 1992; Turvey et al., 1981; Zukow-Goldring & Arbib, 2007) This allows us to “get the idea” of novel tools by a mix of verbal instruction, complex imitation, mechanical reasoning (Goldenberg & Hagmann, 1998), and trial-and-error—the latter being crucial as we hone skill in using a tool through extended practice with it.

  2. Unfortunately, the data do not support ready discrimination between F4 and F5 cells.

  3. Note that even in grasping, the hand can be reconfigured to provide different end-effectors, e.g., the pads of thumb and index finger in a precision pinch, the palm and inner finger surfaces in a power grasp. So the hypothesis that F5 neurons encode the motion of the end-effector in extrinsic coordinates is still consistent with these new data and previous research in F5 (Rizzolatti et al., 1988; Raos et al., 2006; Umilta et al., 2007) that relate neuron activity to grasp type and phase and wrist orientation.

  4. An informal description of ACQ was published in Arbib and Bonaiuto (2008), an extended description of the model with further simulation results will appear in Bonaiuto and Arbib (2009).

References

  • Alexander, G. E., & Crutcher, M. D. (1990). Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. Journal of Neurophysiology, 64, 164–178.

    PubMed  Google Scholar 

  • Arbib, M. A. (1981). Perceptual structures and distributed motor control. In V. B. Brooks (Ed.), Handbook of physiology—the nervous system II. motor control (pp. 1449–1480). American Physiological Society.

  • Arbib, M. A., & Bonaiuto, J. B. (2008). From grasping to complex imitation: modeling mirror systems on the evolutionary path to language. Mind & Society, 7, 43–64.

    Article  Google Scholar 

  • Arbib, M. A., Iberall, T., & Lyons, D. (1985). Coordinated control programs for control of the hands. In: A. W. Goodwin, & I. Darian-Smith (Eds.), Hand function and the neocortex (pp. 111–129). Berlin: Springer.

  • Arbib, M. A., Schweighofer, N., & Thach, W. T. (1995). Modeling the cerebellum: from adaptation to coordination. In D. J. Glencross & J. P. Piek (Eds.) Motor Control and Sensory-Motor Integration: Issues and Directions (pp. 11–36). North Holland: Elsevier.

  • Asanuma, H., & Arissian, K. (1984). Experiments on functional role of peripheral input to motor cortex during voluntary movements in the monkey. Journal of Neurophysiology, 52(2), 212–227.

    PubMed  Google Scholar 

  • Berthier, N. E., & Keen, R. (2006). Development of reaching in infancy. Experimental Brain Research, 169(4), 507–518.

    Article  Google Scholar 

  • Berthier, N. E., Clifton, R. K., Gullapalli, V., McCall, D. D., & Robin, D. J. (1996). Visual information and object size in the control of reaching. Journal of Motor Behavior, 28(3), 187–197.

    PubMed  Google Scholar 

  • Berthier, N. E., Clifton, R. K., McCall, D. D., & Robin, D. J. (1999). Proximodistal structure of early reaching in human infants. Experimental Brain Research, 127(3), 259–269.

    Article  Google Scholar 

  • Berti, A., & Frassinetti, F. (2000). When far becomes near: remapping of space by tool use. Journal of Cognitive Neurosciences, 12(3), 415–420.

    Article  Google Scholar 

  • Binkofski, F., Buccino, G., Dohle, C., Seitz, R. J., & Freund, H. J. (1999). Mirror agnosia and mirror ataxia constitute different parietal lobe disorders. Annals of Neurology, 46(1), 51–61.

    Article  PubMed  Google Scholar 

  • Bonaiuto, J. B., & Arbib, M. A. (2009). What did i just do? A new role for mirror neurons (submitted).

  • Bonaiuto, J. B., Rosta, E., & Arbib, M. A. (2007). Extending the mirror neuron system model. I : Audible actions and invisible grasps. Biological Cybernetics, 96, 9–38.

    Article  PubMed  Google Scholar 

  • Caminiti, R., Johnson, P. B., Galli, C., Ferraina, S., & Burnod, Y. (1991). Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. Journal of Neuroscience, 11(5), 1182–1197.

    PubMed  Google Scholar 

  • Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron, 45(5), 801–814.

    Article  PubMed  Google Scholar 

  • Clifton, R. K., Muir, D. W., Ashmead, D. H., & Clarkson, M. G. (1993). Is visually guided reaching in early infancy a myth? Child Development, 64(4), 1099–1110.

    Article  PubMed  Google Scholar 

  • Craik, K. J. W. (1943). The nature of explanation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Crammond, D. J., & Kalaska, J. F. (1994). Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. Journal of Neurophysiology, 71(3), 1281–1284.

    PubMed  Google Scholar 

  • Crammond, D. J., & Kalaska, J. F. (2000). Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. Journal of Neurophysiology, 84(2), 986–1005.

    PubMed  Google Scholar 

  • Crutcher, M. D., & Alexander, G. E. (1990). Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. Journal of Neurophysiology, 64, 151–163.

    PubMed  Google Scholar 

  • Dautenhahn, K., & Nehaniv, C. (Eds.). (2002). Imitation in animals and artifacts. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Dum, R. P., & Strick, P. L. (2005). Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. Journal of Neuroscience, 25(6), 1375–1386.

    Article  PubMed  Google Scholar 

  • Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Johansson, R. S., & Forssberg, H. (2000). Cortical activity in precision- versus power-grip tasks: an fMRI study. Journal of Neurophysiology, 83(1), 528–536.

    PubMed  Google Scholar 

  • Evarts, E. V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology, 31, 14–27.

    PubMed  Google Scholar 

  • Fagg, A. H., & Arbib, M. A. (1998). Modeling parietal-premotor interactions in primate control of grasping. Neural Networks, 11(7–8), 1277–1303.

    Article  PubMed  Google Scholar 

  • Farnè, A., Iriki, A., & Ladavas, E. (2005). Shaping multisensory action-space with tools: evidence from patients with cross-modal extinction. Neuropsychologia, 43(2), 238–248.

    Article  PubMed  Google Scholar 

  • Ferrari, P. F., Rozzi, S., & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neurosciences, 17(2), 212–226.

    Article  Google Scholar 

  • Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308(5722), 662–667.

    Article  PubMed  Google Scholar 

  • Frey, S. H. (2007). What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex, 43(3), 368–375.

    Article  PubMed  Google Scholar 

  • Frey, S. H., Vinton, D., Norlund, R., & Grafton, S. T. (2005). Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Brain Research: Cognitive Brain Research, 23(2–3), 397–405.

    Article  PubMed  Google Scholar 

  • Gentilucci, M., Roy, A. C., & Stefanini, S. (2004). Grasping an object naturally or with a tool: are these tasks guided by a common motor representation? Experimental Brain Research, 157(4), 496–506.

    Article  Google Scholar 

  • Goldenberg, G., & Hagmann, S. (1998). Tool use and mechanical problem solving in apraxia. Neuropsychologia, 36(7), 581–589.

    Article  PubMed  Google Scholar 

  • Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103–111.

    Article  Google Scholar 

  • Han, C. E., Arbib, & Schweighofer, N. (2008). Stroke rehabilitation reaches a threshold. PLoS Computational Biology, 4(8), e1000133.

  • Head, H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34, 102–254.

    Article  Google Scholar 

  • Hepp-Reymond, M. C., Husler, E. J., Maier, M. A., & Ql, H. X. (1994). Force-related neuronal activity in two regions of the primate ventral premotor cortex. Canadian Journal of Physiology and Pharmacology, 72(5), 571–579.

    PubMed  Google Scholar 

  • Hoff, B., & Arbib, M. A. (1993). Models of trajectory formation and temporal interaction of reach and grasp. Journal of Motor Behavior, 25(3), 175–192.

    PubMed  Google Scholar 

  • Holmes, N. P., Calvert, G. A., & Spence, C. (2004). Extending or projecting peripersonal space with tools? Multisensory interactions highlight only the distal and proximal ends of tools. Neuroscience Letters, 372(1–2), 62–67.

    Article  PubMed  Google Scholar 

  • Iberall, T., & Arbib, M. A. (1990). Schemas for the control of hand movements: an essay on cortical localization. In M. A. Goodale (Ed.), Vision and action: the control of grasping (pp. 204–242). Ablex Publishing Corporation.

  • Iberall, T., Bingham, G., & Arbib, M. A. (1986). Opposition space as a structuring concept for the analysis of skilled hand movements. In H. Heuer & C. Fromm (Eds.), Generation and modulation of action patterns (pp. 158–173). Berlin: Springer.

    Google Scholar 

  • Imamizu, H., Higuchi, S., Toda, A., & Kawato, M. (2007). Reorganization of brain activity for multiple internal models after short but intensive training. Cortex, 43(3), 338–349.

    Article  PubMed  Google Scholar 

  • Iriki, A., Tanaka, M., & Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport, 7, 2325–2330.

    Article  PubMed  Google Scholar 

  • Jacobs, S., Danielmeier, C., & Frey, S. H. (2009). Human anterior intra-parietal and ventral premotor cortices support effector-specific representations of grasping with the hand or a novel tool (submitted).

  • Jeannerod, M., & Biguer, B. (1982). Visuomotor mechanisms in reaching within extra-personal space. In D. J. Ingle, R. J. W. Mansfield, & M. A. Goodale (Eds.), Advances in the analysis of visual behavior (pp. 387–409). Cambridge, MA: The MIT Press.

  • Jeannerod, M., Arbib, M. A., Rizzolatti, G., & Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18(7), 314–320.

    Article  PubMed  Google Scholar 

  • Johnson, S. H. (2000). Thinking ahead: the case for motor imagery in prospective judgements of prehension. Cognition, 74(1), 33–70.

    Article  PubMed  Google Scholar 

  • Johnson, S. H., & Grafton, S. T. (2003). From ‘acting on’ to ‘acting with’: the functional anatomy of object-oriented action schemata. Progress in Brain Research, 142, 127–139.

    Article  PubMed  Google Scholar 

  • Johnson, S. H., Rotte, M., Grafton, S. T., Hinrichs, H., Gazzaniga, M. S., & Heinze, H. J. (2002). Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage, 17(4), 1693–1704.

    Article  PubMed  Google Scholar 

  • Johnson-Frey, S. H. (2003). Cortical mechanisms of human tool use. In S. H. Johnson-Frey (Ed.), Taking action: cognitive neuroscience perspectives on the problem of intentional acts (pp. 185–217). Cambridge, MA: The MIT Press.

  • Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71–78.

    Article  PubMed  Google Scholar 

  • Jordan, M. I., & Rumelhart, D. (1992). Forward models: supervised learning with a distal teacher. Cognitive Science, 16, 307–354.

    Article  Google Scholar 

  • Kakei, S., Hoffman, D. S., & Strick, P. L. (2001). Direction of action is represented in the ventral premotor cortex. Nature Neuroscience, 4(10), 1020–1025.

    Article  PubMed  Google Scholar 

  • Kakei, S., Hoffman, D. S., & Strick, P. L. (2003). Sensorimotor transformations in cortical motor areas. Neuroscience Research, 46(1), 1–10.

    Article  PubMed  Google Scholar 

  • Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science, 297, 846–848.

    Article  PubMed  Google Scholar 

  • Króliczak, G., & Frey, S. H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex (in press).

  • Kurata, K. (1993). Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. Journal of Neurophysiology, 69, 187–200.

    PubMed  Google Scholar 

  • Kurata, K., & Hoshi, E. (2002). Movement-related neuronal activity reflecting the transformation of coordinates in the ventral premotor cortex of monkeys. Journal of Neurophysiology, 88(6), 3118–3132.

    Article  PubMed  Google Scholar 

  • Luppino, G., Murata, A., Govoni, P., & Matelli, M. (1999). Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Experimental Brain Research, 128(1–2), 181–187.

    Article  Google Scholar 

  • Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438.

    Article  PubMed  Google Scholar 

  • Maier, M. A., Bennett, K. M., Hepp-Reymond, M. C., & Lemon, R. N. (1993). Contribution of the monkey corticomotoneuronal system to the control of force in precision grip. Journal of Neurophysiology, 69(3), 772–785.

    PubMed  Google Scholar 

  • Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8(2), 79–86.

    Article  PubMed  Google Scholar 

  • Maravita, A., Spence, C., Kennett, S., & Driver, J. (2002). Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition, 83(2), B25–B34.

    Article  PubMed  Google Scholar 

  • Marconi, B., Genovesio, A., Battaglia-Mayer, A., Ferraina, S., Squatrito, S., & Molinari, M., et al. (2001). Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cerebral Cortex, 11(6), 513–527.

    Article  PubMed  Google Scholar 

  • Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996a). Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain, 119(Pt 4), 1183–1198.

    Article  PubMed  Google Scholar 

  • Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996b). Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain, 119(Pt 4), 1199–1211.

    Article  PubMed  Google Scholar 

  • Matelli, M., & Luppino, G. (2001). Parietofrontal circuits for action and space perception in the macaque monkey. Neuroimage, 14, S27–S32.

    Article  PubMed  Google Scholar 

  • Ochiai, T., Mushiake, H., & Tanji, J. (2005). Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task. Cerebral Cortex, 15(7), 929–937.

    Article  PubMed  Google Scholar 

  • Oztop, E., Arbib, M. A., & Bradley, N. (2006). The development of grasping and the Mirror System. In M. A. Arbib (Ed.), Action to language via the mirror neuron system (pp. 397–423). Cambridge: Cambridge University Press.

  • Oztop, E., Bradley, N. S., & Arbib, M. A. (2004). Infant grasp learning: a computational model. Experimental Brain Research, 158(4), 480–503.

    Article  Google Scholar 

  • Oztop, E., Imamizu, H., Cheng, G., & Kawato, M. (2007). A computational model of anterior intraparietal (AIP) neurons. Neurocomputing, 69, 1354–1361

  • Picard, N., & Strick, P. L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11, 663–672.

    Article  PubMed  Google Scholar 

  • Pouget, A., Deneve, S., Ducom, J. C., & Latham, P. E. (1999). Narrow versus wide tuning curves: what’s best for a population code? Neural Computation, 11(1), 85–90.

    Article  PubMed  Google Scholar 

  • Raos, V., Umiltà, M. A., Gallese, V., & Fogassi, L. (2004). Functional properties of grasping-related neurons in the dorsal premotor area F2 of the macaque monkey. Journal of Neurophysiology, 92(4), 1990–2002.

    Article  PubMed  Google Scholar 

  • Raos, V., Umiltà, M. A., Murata, A., Fogassi, L., & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. Journal of Neurophysiology, 95(2), 709–729.

    Article  PubMed  Google Scholar 

  • Riehle, A., & Requin, J. (1989). Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. Journal of Neurophysiology, 61(3), 534–549.

    PubMed  Google Scholar 

  • Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research, 71, 491–507.

    Article  Google Scholar 

  • Rolls, E. T. (2004). Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. The Anatomical Record: Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 281(1), 1212–1225.

    Google Scholar 

  • Sakamoto, T., Arissian, K., & Asanuma, H. (1989). Functional role of the sensory cortex in learning motor skills in cats. Brain Research, 503(2), 258–264.

    Article  PubMed  Google Scholar 

  • Schluter, N. D., Krams, M., Rushworth, M. F., & Passingham, R. E. (2001). Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia, 39(2), 105–113.

    Article  PubMed  Google Scholar 

  • Schluter, N. D., Rushworth, M. F., Passingham, R. E., & Mills, K. R. (1998). Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: a study using transcranial magnetic stimulation. Brain, 121(Pt 5), 785–799.

    Article  PubMed  Google Scholar 

  • Schwartz, A. B., Kettner, R. E., & Georgopoulos, A. P. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. 1. Relations between single cell discharge and direction of movement. Journal of Neuroscience, 8, 2913–2927.

    PubMed  Google Scholar 

  • Spoelstra, J., & Arbib, M. A. (2001). Cerebellar microcomplexes and the modulation of motor pattern generators. Autonomous Robots, 11, 273–278.

    Article  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Taub, E., Uswatte, G., & Elbert, T. (2002). New treatments in neurorehabilitation founded on basic research. Nature Reviews: Neuroscience, 3, 228–236.

    Article  PubMed  Google Scholar 

  • Tunik, E., Frey, S. H., & Grafton, S. T. (2005). Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8(4), 505–511.

    PubMed  Google Scholar 

  • Turvey, M. (1992). Affordances and prospective control: an outline of the ontology. Ecological Psychology, 4, 173–187.

    Article  Google Scholar 

  • Turvey, M., Shaw, R., Reed, E., & Mace, W. (1981). Ecological laws of perceiving and acting. Cognition, 9, 237–304.

    Article  PubMed  Google Scholar 

  • Umilta, M. A., Brochier, T., Spinks, R. L., & Lemon, R. N. (2007). Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp. Journal of Neurophysiology, 98(1), 488–501.

    Article  PubMed  Google Scholar 

  • Umiltà, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., & Caruana, F., et al. (2008). When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2209–2213.

    Article  PubMed  Google Scholar 

  • Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., & Keysers, C., et al. (2001). I know what you are doing: a neurophysiological study. Neuron, 31, 155–165.

    Article  PubMed  Google Scholar 

  • von Hofsten, C. (2004). An action perspective on motor development. Trends in Cognitive Sciences, 8(6), 266–272.

    Article  Google Scholar 

  • von Hofsten, C., & Ronnqvist, L. (1993). The Structuring of neonatal arm movements. Child Development, 64, 1046–1057.

    Article  Google Scholar 

  • Weinrich, M., & Wise, S. P. (1982). The premotor cortex of the monkey. Journal of Neuroscience, 2(9), 1329–1345.

    PubMed  Google Scholar 

  • Wing, A. M. (2000). Motor control: mechanisms of motor equivalence in handwriting. Current Biology, 10(6), R245–248.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329.

    Article  PubMed  Google Scholar 

  • Zukow-Goldring, P., & Arbib, M. A. (2007). Affordances, effectivities, and assisted imitation: caregivers and the directing of attention. Neurocomputing, 70, 2181–2193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Arbib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbib, M.A., Bonaiuto, J.B., Jacobs, S. et al. Tool use and the distalization of the end-effector. Psychological Research 73, 441–462 (2009). https://doi.org/10.1007/s00426-009-0242-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-009-0242-2

Keywords

Navigation