Skip to main content
Log in

The effects of dividing attention on the encoding and performance of novel naturalistic actions

  • Original Article
  • Published:
Psychological Research PRPF Aims and scope Submit manuscript

Abstract

Novel naturalistic actions (NNAs) are multi-step, goal-directed actions involving the manipulation of objects that are unfamiliar to a person prior to instruction. Experiment 1 investigated the cognitive processes involved with encoding and performing NNAs by selectively interfering with attention during viewing or production of a NNA using the dual-task paradigm (n = 27, healthy adults). Consistent with the central findings from the dual-task memory literature, dividing attention at viewing caused a relatively greater disruptive effect on NNA performance than selectively interfering with attention during enactment. A follow-up experiment (n = 24, healthy adults) increased difficulty of memory retrieval by having participants verbally describe previously viewed NNAs while concurrently performing a secondary task, and it revealed no significant differences between the effects of dividing attention on the verbal description and physical construction of NNAs. The implications of our findings for the processes mediating encoding and enactment of naturalistic actions were presented. As well, the utility of a dynamic technique of inducing error types normally found in neurologically impaired populations was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Fleiss and Cohen (1973) have demonstrated mathematically that the ICC is equivalent to weighted Kappa, and recommend its use in analyses with several nominal variables to be judged that behave more like ordinal variables. Conventionally, an ICC of 0.70 is considered acceptable inter-rater reliability in psychological research (more detailed guidelines dictated that 0.40–0.59 represents moderate inter-rater reliability, 0.60–0.79 substantial, and 0.80 outstanding; see Landis & Koch, 1977).

References

  • Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A. D., Lewis, V., Eldridge, M., & Thomson, N. (1984). Attention and retrieval from long-term memory. Journal of Experimental Psychology: General, 113, 518–540.

    Article  Google Scholar 

  • Bekkering, H., Brass, M., Woschina, S., & Jacobs, A. M. (2005). Goal-directed imitation in patients with ideomotor apraxia. Cognitive Neuropsychology, 22, 419–432.

    Article  Google Scholar 

  • Botvinick, M., & Plaut, D. C. (2004). Doing without schema hierarchies: A recurrent connectionist approach to normal and impaired routine sequential action. Psychological Review, 111, 395–429.

    Article  PubMed  Google Scholar 

  • Butterworth, G. (1990). On reconceptualizing sensori-motor coordination in dynamic system terms. In H. Bloch, & B. I. Bertenthal (Eds.), Sensory motor organization and development in infancy and early childhood (pp. 57–73). The Netherlands: Kluwer.

    Google Scholar 

  • Buxbaum, L. J., Kyle, K. M., & Menon, R. (2005). On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled objects-related actions in humans. Cognitive Brain Research, 25, 226–239.

    Article  PubMed  Google Scholar 

  • Buxbaum, L. J., Schwartz, M. F., & Montgomery, M. W. (1998). Ideational apraxia and naturalistic action. Cognitive Neuropsychology, 15, 617–643.

    Article  Google Scholar 

  • Cooper, R. P., Schwartz, M. F., Yule, P., & Shallice, T. (2005). The simulation of action disorganization in complex activities of daily living. Cognitive Neuropsychology, 22, 959–1004.

    Article  Google Scholar 

  • Craik, F. I. M., Govoni, R., Naveh-Benjamin, M., & Anderson, N. D. (1996). The effects of divided attention on encoding and retrieval processes in human memory. Journal of Experimental Psychology: General, 125, 159–180.

    Article  Google Scholar 

  • Craik, F. I. M, Naveh-Benjamin, M., Ishaik, G., & Anderson, N. D. (2000). Divided attention during encoding and retrieval: Differential control effects? Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1744–1749.

    Article  PubMed  Google Scholar 

  • Creem, S. H., & Proffitt, D. R. (2001). Grasping objects by their handles: A necessary interaction between cognition and action. Journal of Experimental Psychology: Human Perception and Performance, 27, 218–228.

    Article  PubMed  Google Scholar 

  • Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., et al. (1997). Brain activity during observation of actions: Influence of action content and subject’s strategy. Brain, 120, 1763–1777.

    Article  PubMed  Google Scholar 

  • De Renzi, E., & Lucchelli, F. (1988). Ideational apraxia. Brain, 111, 1173–1185.

    Article  PubMed  Google Scholar 

  • Dobbs, A. R., & Rule, B. G. (1989). Adult age differences in working memory. Psychology and Aging, 4, 500–503.

    Article  PubMed  Google Scholar 

  • Engelkamp, J. (1998). Memory for actions. Hove: Psychology Press.

    Google Scholar 

  • Fernandes, M. A., & Moscovitch, M. (2000). Divided attention and memory: Evidence of substantial interference effects at retrieval and encoding. Journal of Experimental Psychology: General, 129, 155–176.

    Article  Google Scholar 

  • Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement, 33, 613–619.

    Article  Google Scholar 

  • Giovannetti, T., Libon, D. J., Buxbaum, L. J., & Schwartz, M. F. (2002). Naturalistic action impairments in dementia. Neuropsychologia, 40, 1220–1232.

    Article  PubMed  Google Scholar 

  • Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C.-H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236–243.

    Article  PubMed  Google Scholar 

  • Hartmann, K., Goldenberg, G., Daumuller, M., & Hermsdorfer, J. (2005). It takes the whole brain to make a cup of coffee: The neuropsychology of naturalistic actions involving technical devices. Neuropsychologia, 43, 625–637.

    Article  PubMed  Google Scholar 

  • Humphreys, G. W., & Forde, E. M. E. (1998). Disordered action schema and action disorganisation syndrome. Cognitive Neuropsychology, 15, 771–811.

    Google Scholar 

  • Iacoboni, M., Woods, R. P., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human interaction. Science, 286, 2526–2528.

    Article  PubMed  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.

    Article  PubMed  Google Scholar 

  • Lindemann, O., Stenneken, P., van Schie, H. T., & Bekkering, H. (2006). Semantic activation in action planning. Journal of Experimental Psychology: Human Perception and Performance, 32, 633–643.

    Article  PubMed  Google Scholar 

  • Luria, A. R. (1966). Higher cortical functions in man. London: Tavistock.

    Google Scholar 

  • Moscovitch, M. (1992). Memory and working with memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience, 4, 257–267.

    Article  Google Scholar 

  • Moscovitch, M. (1994). Interference at retrieval from long-term memory: The influences of frontal and temporal lobes. Neuropsychology, 4, 525–534.

    Google Scholar 

  • Naveh-Benjamin, M., Craik, F. I. M., Guez, J., & Dori, H. (1998). Effects of divided attention on encoding and retrieval processes in human memory: Further support for an asymmetry. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1091–1104.

    Article  PubMed  Google Scholar 

  • Naveh-Benjamin, M., Craik, F. I. M., Guez, J., & Kreuger, S. (2005). Divided attention in younger and older adults: Effects of strategy and relatedness on memory performance and secondary task costs. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 520–537.

    Article  PubMed  Google Scholar 

  • Naveh-Benjamin, M., Kilb, A., & Fisher, T. (2006). Concurrent task effects on memory encoding and retrieval: Further support for an asymmetry. Memory and Cognition, 34, 90–101.

    Google Scholar 

  • Newtson, D. (1973). Attribution and the unit of perception of ongoing behavior. Journal of Personality and Social Psychology, 28, 28–38.

    Article  Google Scholar 

  • Nyberg, L., Petersson, K. M., Nilsson, L-G., Sandblom, J., Aberg, C., & Ingvar, M. (2001). Reactivation of motor brain area during explicit memory for actions. Neuroimage, 14, 521–528.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.

    Article  Google Scholar 

  • Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131–141.

    Article  Google Scholar 

  • Rohrer, D., & Pashler, H. E. (2003). Concurrent task effects on memory retrieval. Psychonomic Bulletin & Review, 10, 96–103.

    Google Scholar 

  • Rumiati, R. I., & Bekkering, H. (2003). To imitate or not to imitate: How the brain can do it, that is the question. Brain and Cognition, 53, 479–482.

    Article  PubMed  Google Scholar 

  • Rumiati, R. I., & Tessari, A. (2002). Imitation of novel and well-known actions. Experimental Brain Research, 142, 425–433.

    Article  Google Scholar 

  • Rusted, J., & Sheppard, L. (2002). Action-based memory in Alzheimer’s Disease: A longitudinal look at tea making. Neurocase, 8, 111–126.

    PubMed  Google Scholar 

  • Schacter, D. L., & Tulving, E. (1994). What are the memory systems of 1994? In: D. L. Schacter, & E. Tulving (Eds.), Memory systems 1994 (pp. 1–35). Cambridge: MIT Press.

    Google Scholar 

  • Schneider, W., Eschman, A., & Zuccolotta, A. (2002). E-prime user’s guide. Pittsburgh: Psychology Software Tools.

    Google Scholar 

  • Schwartz, M. F. (2006). The cognitive neuropsychology of everyday action and planning. Cognitive Neuropsychology, 23, 202–221.

    Article  Google Scholar 

  • Schwartz, M. F., Buxbaum, L. J., Montgomery, M. W., Fitzpatrick-DeSalme, E., Hart, T., Ferraro, M., et al. (1999). Naturalistic action production following right hemisphere stroke. Neuropsychologia, 37, 51–56.

    Article  PubMed  Google Scholar 

  • Schwartz, M. F., Montgomery, M. W., Buxbaum, L. J., Less, S. S., Carew, T. G., Coslett, H. B., et al. (1998). Naturalistic action impairment in closed head injury. Neuropsychologia, 12, 13–28.

    Article  Google Scholar 

  • Schwartz, M. F., Reed, E. S., Montgomery, M. W., Palmer, C., & Mayer, N. H. (1991). The qualitative description of action disorganization after brain damage: A case study. Cognitive Neuropsychology, 8, 381–414.

    Article  Google Scholar 

  • Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428.

    Article  PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.

    Article  PubMed  Google Scholar 

  • Troyer, A. K., & Craik, F. I. M. (2000). The effect of divided attention on memory for items and their context. Canadian Journal of Experimental Psychology, 54, 161–170.

    PubMed  Google Scholar 

  • Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130, 29–58.

    Article  Google Scholar 

  • Zalla, T., Plassiart, C., Pillon, B., Grafman, J., & Sirigu, A. (2001). Action planning in a virtual context after prefrontal cortex damage. Neuropsychologia, 39, 759–770.

    Article  PubMed  Google Scholar 

  • Zalla, T., Pradat-Diehl, P., & Sirigu, A. (2003). Perception of action boundaries in patients with frontal lobe damage. Neuropsychologia, 41, 1619–27.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Gold.

Additional information

David Gold’s research was supported in part by a Canadian Institute of Health Research Canada Graduate Scholarship Master’s Award, National Science and Engineering Research Council Doctoral Award, and an Ontario Graduate Scholarship Doctoral Award. Norman Park’s research was supported in part by the Heart and Stroke Foundation.

Appendix A

Appendix A

List of the primary steps required to perform one of the novel naturalistic actions

Bird feeder NNA

  1. 1.

    Make a hole in the center of a styrofoam ball using a tapered stick.

  2. 2.

    Enlarge the hole in the ball with a pencil.

  3. 3.

    Take wire and thread button onto wire.

  4. 4.

    Thread both ends of wire through the ball, and twist the wire at the top.

  5. 5.

    Put an adequate amount of glue onto paper. Coat glue evenly on surface of ball.

  6. 6.

    Roll ball in birdseed so that it covers entire surface of ball.

  7. 7.

    Display birdfeeder properly by holding it by wire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, D.A., Park, N.W. The effects of dividing attention on the encoding and performance of novel naturalistic actions. Psychological Research 73, 336–349 (2009). https://doi.org/10.1007/s00426-008-0148-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-008-0148-4

Keywords

Navigation