Skip to main content
Log in

Mechanisms underlying spatial coding in a multiple-item Simon task

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Choice responses are faster when target position and response side correspond than when they do not, even if target position is response-irrelevant. This “Simon effect” has also been observed in case of multi-item arrays. Generally, it is assumed that an automatically generated spatial response code is responsible for the effect. The referential-coding account assumes that this code is directly related to the target, although the moment of production of the code is not fully clear. The attention-shift account assumes that the code is directly related to the direction of the most recent attentional shift. An experiment was performed in which left or right target locations were indicated by arrows occurring before (precue), simultaneous with (simcue), or after (postcue) six-element arrays. Overt responses and EEG potentials were recorded. The Simon effect was present in all conditions, and decreased when responses were slower. No relation was found between amplitude of posterior lateralized components and the magnitude of the Simon effect. A posterior contralateral negativity was also found after presenting the arrays in the precue condition, which might reflect the reorienting of attention toward the target position. The results are more favorable to the referential-coding account although this account becomes very similar to the attention-shift hypothesis as the moment of formation of the spatial response code is related to effective target onset rather than to stimulus onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The term “spatial code” refers to the neuronal representation of a location in outer space. This code may be directly related to a stimulus or a response modality, but it may also be supramodal, referring to a description of space that is independent from but linked with different stimulus and also response modalities.

  2. This criterion of 40 µV was determined in sessions which revealed that the amplitude of the hEOG in cases of a horizontal eye movement increases about 20 µV per degree of visual angle (see also Van der Lubbe & Woestenburg, 1999; Van der Lubbe & Keuss, 2001). So by approximation, eye movements larger than 2° were rejected from further analyses.

  3. Hommel suggested that precues may not only speed up identification but also processing and possibly decay of the spatial response code along the automatic route, which could result in a Simon effect of equal magnitude in the three cue conditions.

  4. We thank Hartmut Leuthold for this suggestion.

References

  • Corbetta, M., Kincade, J. M., & Shulman, G.L. (2002) Neural systems for visual orienting and their relationships to spatial working memory. Journal of Cognitive Neuroscience, 14, 508–523.

    Google Scholar 

  • De Jong, R., Liang, C., & Lauber E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731–750.

    PubMed  Google Scholar 

  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36, 1827–1837.

    CAS  Google Scholar 

  • Deubel, H., Schneider, W. X., & Paprotta A (1998). Selective dorsal and ventral processing: Evidence for a common attentional mechanism in reaching and perception. Visual Cognition, 5, 81–107.

    Google Scholar 

  • Eimer, M. (1995). Stimulus-response compatibility and automatic response activation: Evidence from psychophysiological studies. Journal of Experimental Psychology: Human Perception and Performance, 21, 837–854.

    Article  CAS  PubMed  Google Scholar 

  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.

    Article  CAS  PubMed  Google Scholar 

  • Eimer, M., Hommel, B., & Prinz, W. (1995). S-R compatibility and response selection. Acta Psychologica, 90, 301–313.

    Article  Google Scholar 

  • Harter, M. R., Miller, S. L., Price, N. J., LaLonde, M. E., & Keyes, A. L. (1989). Neural processes involved in directing attention. Journal of Cognitive Neuroscience, 1, 223–237.

    Google Scholar 

  • Hommel, B. (1993a). The role of attention for the Simon effect. Psychological Research, 55, 208–222.

    Google Scholar 

  • Hommel, B. (1993b). The relationship between stimulus processing and response selection in the Simon task: Evidence for a temporal overlap. Psychological Research, 55, 280–290.

    Google Scholar 

  • Hommel, B. (1994). Spontaneous decay of response-code activation. Psychological Research, 56, 261–268.

    CAS  PubMed  Google Scholar 

  • Hommel, B. (1995). Stimulus-response compatibility and the Simon effect: Toward an empirical clarification. Journal of Experimental Psychology: Human Perception and Performance, 21, 764–775.

    Article  Google Scholar 

  • Hopf, J.-M., & Mangun, G. R. (2000). Shifting visual attention in space: An electrophysiological analysis using high spatial resolution mapping. Clinical Neurophysiology, 11, 1241–1257.

    Article  Google Scholar 

  • Ivanoff, J. (2003). On spatial response code activation in a Simon task. Acta Psychologica, 112, 157–179.

    Article  PubMed  Google Scholar 

  • Ivanoff, J., & Peters, M. (2000). A shift of attention may be necessary, but it is not sufficient, for the generation of the Simon effect. Psychological Research, 64, 117–135.

    Article  CAS  PubMed  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility. A model and taxonomy. Psychological Review, 97, 253–270.

    CAS  PubMed  Google Scholar 

  • Lu, C.-H., & Proctor, R. W. (1995). The influence of irrelevant local information on performance: A review of the Simon effect and spatial Stroop effects. Psychonomic Bulletin & Review, 2, 174–207.

    Google Scholar 

  • Luck, S. J., & Hillyard, S. A. (1994). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000–1014.

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti, R., & Umiltà, C. (1989). Splitting visual space with attention. Journal of Experimental Psychology: Human Perception and Performance, 15, 164–169.

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti, R., & Umiltà, C. (1994). Attention shift produces spatial stimulus codes. Psychological Research, 56, 144–150.

    CAS  PubMed  Google Scholar 

  • Notebaert, W., Soetens, E., & Melis, A. (2001). Sequential analysis of a Simon task: Evidence for an attention shift account. Psychological Research, 65, 170–184.

    Article  CAS  PubMed  Google Scholar 

  • Pivik, R. T., Broughton, R. J., Coppola, R., Davidson, R. J., Fox, N, & Nuwer, M. R. (1993). Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts. Psychophysiology, 30, 547–558.

    Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25.

    CAS  PubMed  Google Scholar 

  • Praamstra, P., & Plat, F. M. (2001). Failed suppression of direct visuomotor activation in Parkinson’s disease. Journal of Cognitive Neuroscience, 13, 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Proctor, R. W., & Lu, C.-H. (1994). Referential coding and attention-shifting account of the Simon effect. Psychological Research, 56, 185–195.

    CAS  PubMed  Google Scholar 

  • Rizzolatti, G., Riggio, L., Dascola I, & Umiltà, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31–46.

    CAS  PubMed  Google Scholar 

  • Rubichi, S., Nicoletti, R., Iani, C., & Umiltà, C. (1997). The Simon effect occurs relative to the direction of an attention shift. Journal of Experimental Psychology: Human Perception and Performance, 23, 1353–1364.

    Article  CAS  PubMed  Google Scholar 

  • Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In: Proctor, R. W. and Reeve, T. G. (Eds.) Stimulus-response compatibility: An integrated perspective (pp. 31–86). Amsterdam: North Holland.

  • Simon, J. R., & Rudell, A. P. (1967). Auditory S-R compatibility: The effect of an irrelevant cue on information processing. Journal of Experimental Psychology, 51, 300–304.

    CAS  Google Scholar 

  • Stoffer, T. H. (1991). Attentional focussing and spatial stimulus-response compatibility. Psychological Research, 53, 127–135.

    CAS  PubMed  Google Scholar 

  • Stoffer, T. H., & Umiltà, C. (1997). Spatial stimulus coding and the focus of attention in S-R compatibility and the Simon effect. In B. Hommel & W. Prinz (Eds.), Theoretical issues in stimulus-response compatibility (pp. 181–208). Amsterdam: Elsevier.

  • Stoffer, T. H., & Yakin, A. R. (1994). The functional role of attention for spatial coding in the Simon effect. Psychological Research, 56, 151–162.

    CAS  PubMed  Google Scholar 

  • Umiltà, C., & Liotti, M. (1987). Egocentric and relative spatial codes in S-R compatibility. Psychological Research, 49, 81–90.

    Google Scholar 

  • Umiltà, C., & Nicoletti, R. (1992). An integrated model of the Simon effect. In J. Alegria, D. Holender, J. Junca de Morais, & M. Radeau (Eds.), Analytic approaches to human cognition (pp. 331–350). Amsterdam: North-Holland.

  • Van der Lubbe, R. H. J., & Keuss, P. J. G. (2001). Focused attention reduces the effect of lateral interference in multi-element arrays. Psychological Research, 65, 107–118.

    Article  PubMed  Google Scholar 

  • Van der Lubbe, R. H. J., & Verleger, R. (2002). Aging and the Simon task. Psychophysiology, 39, 100–110.

    Article  PubMed  Google Scholar 

  • Van der Lubbe, R. H. J., & Woestenburg, J. C. (1999). The influence of peripheral cues on the tendency to react towards a lateral relevant stimulus with multiple-item arrays. Biological Psychology, 51, 1–21.

    Article  PubMed  Google Scholar 

  • Van der Lubbe, R. H. J., Keuss, P. J. G., & Stoffels, E. (1996). Threefold effect of peripheral precues: Alertness, orienting, and response tendencies. Acta Psychologica, 94, 319–337.

    Article  PubMed  Google Scholar 

  • Van der Lubbe, R. H. J., Wauschkuhn, B., Wascher, E., Niehoff, T., Kömpf D, & Verleger, R. (2000). Lateralized EEG components with direction information for the preparation of saccades and finger movements. Experimental Brain Research, 132, 163–178.

    Article  Google Scholar 

  • Van der Lubbe, R.H.J., Jaśkowski, P., Wauschkuhn, B., & Verleger, R. (2001). Influence of time pressure in a simple response task, a choice-by-location task, and the Simon task. Journal of Psychophysiology, 15, 241–255.

    Article  Google Scholar 

  • Van Velzen, J., & Eimer, M. (2003). Early posterior ERP components do not reflect the control of attentional shifts towards expected peripheral events. Psychophysiology, 40, 827–831.

    Article  PubMed  Google Scholar 

  • Verleger, R., Gasser, T., & Möcks, J. (1982). Correction for EOG artifacts in event related potentials of the EEG: Aspects of reliability and validity. Psychophysiology, 19, 472–480.

    CAS  PubMed  Google Scholar 

  • Verleger, R., Vollmer, C., Wauschkuhn, B., Van der Lubbe, R. H. J., & Wascher, E. (2000). Dimensional overlap between arrows as cueing stimuli and responses? Evidence from contra-ipsilateral differences in EEG potentials. Cognitive Brain Research, 10, 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, R. J. (1971). S-R compatibility and the idea of a response code. Journal of Experimental Psychology, 88, 354–360.

    CAS  PubMed  Google Scholar 

  • Wascher, E., & Wauschkuhn, B. (1996). The interaction of stimulus- and response-related processing measured by event-related lateralizations of the EEG. Electroencephalography and Clinical Neurophysiology, 99, 149–162.

    Article  CAS  PubMed  Google Scholar 

  • Wascher, E., & Wolber, M. (2004). Attentional and intentional cueing in a Simon task: An EEG-based approach. Psychological Research, 68, 18–30

    Article  PubMed  Google Scholar 

  • Wascher, E., Schatz, U., Kuder, T., & Verleger, R. (2001). Validity and boundary conditions of automatic response activation in the Simon task. Journal of Experimental Psychology: Human Perception and Performance, 27, 731–751.

    CAS  PubMed  Google Scholar 

  • Wauschkuhn, B., Wascher, E., & Verleger, R. (1997). Lateralised cortical activity due to preparation of saccades and finger movements: a comparative study. Electroencephalography and Clinical Neurophysiology, 102, 114–124.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, S., Tsuchiya, H., & Kobayashi, S. (1994). Electroencephalographic activity associated with shifts of visuospatial attention. Brain, 117, 553–562.

    PubMed  Google Scholar 

  • Yamaguchi, S., Tsuchiya, H., & Kobayashi, S. (1995). Electrophysiologic correlates of age effects on visuospatial attention shift. Cognitive Brain Research, 3, 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., & Kornblum, S. (1997). Distributional analysis and De Jong, Liang, and Lauber’s (1994) dual-process model of the Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 23, 1543–1551.

    Article  Google Scholar 

  • Zimba, L., & Brito, C. F. (1995). Attention precueing and the Simon effect: A test of the attention-coding account of the Simon effect. Psychological Research, 58, 102–118.

    Google Scholar 

Download references

Acknowledgements

Rob Van der Lubbe was supported by a grant from The Netherlands Organization for Fundamental Research (NWO) to Albert Postma (No. 440–20–000). In addition, Rob Van der Lubbe and Piotr Jaśkowski were supported by grants from the Deutsche Forschungsgemeinschaft (DFG) to Rolf Verleger (110/7–1 and 110/7–2). We thank Aytaç Aydemir for his help in performing the experiment. Additionally, we want to thank Bernhard Hommel, Hartmut Leuthold, and Carlo Umiltà for thoughtful comments on earlier versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob H. J. Van der Lubbe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Lubbe, R.H.J., Jaśkowski, P. & Verleger, R. Mechanisms underlying spatial coding in a multiple-item Simon task. Psychological Research 69, 179–190 (2005). https://doi.org/10.1007/s00426-004-0176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-004-0176-7

Keywords

Navigation