Skip to main content
Log in

The evolution and formation of centromeric repeats analysis in Vitis vinifera

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Six grape centromere-specific markers for cytogenetics were mined by combining genetic and immunological assays, and the possible evolution mechanism of centromeric repeats was analyzed.

Abstract

Centromeric histone proteins are functionally conserved; however, centromeric repetitive DNA sequences may represent considerable diversity in related species. Therefore, studying the characteristics and structure of grape centromere repeat sequences contributes to a deeper understanding of the evolutionary process of grape plants, including their origin and mechanisms of polyploidization. Plant centromeric regions are mainly composed of repetitive sequences, including SatDNA and transposable elements (TE). In this research, the characterization of centromere sequences in the whole genome of grapevine (Vitis vinifera L.) has been conducted. Five centromeric tandem repeat sequences (Vv1, Vv2, Vv5, Vv6, and Vv8) and one long terminal repeat (LTR) sequence Vv24 were isolated. These sequences had different centromeric distributions, which indicates that grape centromeric sequences may undergo rapid evolution. The existence of extrachromosomal circular DNA (eccDNA) and gene expression in CenH3 subdomain region may provide various potential mechanisms for the generation of new centromeric regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the NCBI repository with accession number of PRJNA897873 and PRJNA907798.

Abbreviations

CenH3:

Centromeric specific histone H3 variant

eccDNA:

Extrachromosomal circular DNA

FPKM:

Fragments per kilobase of exon model per million mapped fragments

LTR:

Long terminal repeat

SatDNA:

Satellite DNA

TE:

Transposable element

References

  • Allshire RC, Nimmo ER, Ekwall K, Javerzat JP, Cranston G (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9:218–233

    CAS  PubMed  Google Scholar 

  • Bloom K, Costanzo V (2017) Centromere structure and function. Prog Mol Subcell Biol 56:515–539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardone MF, Alonso A, Pazienza M, Ventura M, Montemurro G, Carbone L, de Jong PJ, Stanyon R, D’Addabbo P, Archidiacono N, She X, Eichler EE, Warburton PE, Rocchi M (2006) Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7:R91

    PubMed  PubMed Central  Google Scholar 

  • Cheeseman IM, Desai A (2008) Molecular architecture of the kinetochore–microtubule interface. Nat Rev Mol Cell Biol 9:33–46

    CAS  PubMed  Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR (2015) Genomic repeat abundances contain phylogenetic signal. Syst Biol 64:112–126

    CAS  PubMed  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    CAS  PubMed  Google Scholar 

  • Falistocco E, Passeri V, Marconi G (2007) Investigations of 5S rDNA of Vitis vinifera L.: sequence analysis and physical mapping. Genome 50:927–938

    CAS  PubMed  Google Scholar 

  • Ferree PM, Barbash DA (2009) Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol 7:e1000234

    PubMed  PubMed Central  Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525

    CAS  PubMed  Google Scholar 

  • Gassmann R, Rechtsteiner A, Yuen KW, Muroyama A, Egelhofer T, Gaydos L, Barron F, Maddox P, Essex A, Monen J, Ercan S, Lieb JD, Oegema K, Strome S, Desai A (2012) An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature 484:534–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorinšek B, Gubenšek F, Kordiš DA (2004) Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol 21:781–798

    PubMed  Google Scholar 

  • Gresham D, Usaite R, Germann SM, Lisby M, Botstein D, Regenberg B (2010) Adaptation to diverse nitrogen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc Natl Acad Sci USA 107:18551–18556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X, Hu Z (2016) Han F (2016) De Novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet 12:e1005997

    PubMed  PubMed Central  Google Scholar 

  • Han Y, Zhang T, Thammapichai P, Weng Y, Jiang J (2015) Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics 200:771–779

    PubMed  PubMed Central  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    CAS  PubMed  Google Scholar 

  • Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR (2007) CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma 116:275–283

    CAS  PubMed  Google Scholar 

  • Huang X, Zhu M, Zhuang L, Zhang S, Wang J, Chen X, Wang D, Chen J, Bao Y, Guo J, Zhang J, Feng Y, Chu C, Du P, Qi Z, Wang H, Chen P (2018) Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet 131:1967–1986

    CAS  PubMed  Google Scholar 

  • Huang Y, Ding W, Zhang M, Han J, Jing Y, Yao W, Hasterok R, Wang Z, Wang K (2021) The formation and evolution of centromeric satellite repeats in Saccharum species. Plant J 106:616–629

    CAS  PubMed  Google Scholar 

  • Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, Kakuma T, Hiraoka Y, Takahashi K (2008) Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088–1091

    CAS  PubMed  Google Scholar 

  • Jackson SA, Wang ML, Goodman HM, Jiang J (1998) Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 41:566–572

    CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    CAS  PubMed  Google Scholar 

  • Ji W, Wang Y (2013) Breeding for seedless grapes using Chinese wild Vitis spp. II. In vitro embryo rescue and plant development. J Sci Food Agr 93:3870–3875

    CAS  Google Scholar 

  • Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res 27:153–165

    CAS  PubMed  Google Scholar 

  • Keller M (2020) The science of grapevines, 3rd edn. Academic Press, London

    Google Scholar 

  • Ketel C, Wang HS, McClellan M, Bouchonville K, Selmecki A, Lahav T, Gerami-Nejad M, Berman J (2009) Neocentromeres form efficiently at multiple possible loci in Candida albicans. PLoS Genet 5:e1000400

    PubMed  PubMed Central  Google Scholar 

  • Liang Z, Duan S, Sheng J, Zhu S, Ni X, Shao J, Liu C, Nick P, Du F, Fan P, Mao R, Zhu Y, Deng W, Yang M, Huang H, Liu Y, Ding Y, Liu X, Jiang J, Zhu Y, Li S, He X, Chen W, Dong Y (2019) Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nat Commun 10:1190–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomiento M, Jiang Z, D’Addabbo P, Eichler EE, Rocchi M (2008) Evolutionary-new centromeres preferentially emerge within gene deserts. Genome Biol 9:R173

    PubMed  PubMed Central  Google Scholar 

  • Ma J, Wing RA, Bennetzen JL, Jackson SA (2007) Plant centromere organization: a dynamic structure with conserved functions. Trends Genet 23:134–139

    CAS  PubMed  Google Scholar 

  • Ma AH, Wu YQ, Guo ZJ, Zhao SJ (2009) Study on the genetic law of chromosome ploidy in the progenies of grape diploid and tetraploid crosses (in Chinese). Chinese Academy of Agriculture, pp 228–231

  • Macas J, Mészáros T, Nouzová M (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28–35

    CAS  PubMed  Google Scholar 

  • Mason AS, Rousseau-Gueutin M, Morice J, Bayer PE, Besharat N, Cousin A, Pradhan A, Parkin IA, Chèvre AM, Batley J, Nelson MN (2016) Centromere locations in Brassica A and C genomes revealed through half-tetrad analysis. Genetics 202:513–523

    CAS  PubMed  Google Scholar 

  • Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, DeRisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SW (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10

    PubMed  PubMed Central  Google Scholar 

  • Meluh PB, Yang P, Glowczewski L, Koshland D, Smith MM (1998) Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607–613

    CAS  PubMed  Google Scholar 

  • Møller HD, Parsons L, Jørgensen TS, Botstein D, Regenberg B (2015) Extrachromosomal circular DNA is common in yeast. Proc Natl Acad Sci USA 112:E3114–E3122

    PubMed  PubMed Central  Google Scholar 

  • Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang J (2003) Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 163:1221–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    CAS  PubMed  Google Scholar 

  • Navrátilová A, Koblízková A, Macas J (2008) Survey of extrachromosomal circular DNA derived from plant satellite repeats. BMC Plant Biol 8:90

    PubMed  PubMed Central  Google Scholar 

  • Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793

    PubMed  Google Scholar 

  • Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S, Kovařík A, Pellicer J, Wang W, Macas J, Leitch IJ, Leitch AR (2020a) Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants 6:1325–1329

    PubMed  Google Scholar 

  • Novák P, Neumann P, Macas J (2020b) Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc 15:3745–3776

    PubMed  Google Scholar 

  • Paulsen T, Kumar P, Koseoglu MM, Dutta A (2018) Discoveries of extrachromosomal circles of DNA in normal and tumor cells. Trends Genet 34:270–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H, Mirouze M, Bucher E (2022) Extrachromosomal circular DNA: a neglected nucleic acid molecule in plants. Curr Opin Plant Biol 69:102263

    CAS  PubMed  Google Scholar 

  • Plohl M, Meštrović N, Mravinac B (2014) Centromere identity from the DNA point of view. Chromosoma 123:313–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rychlik W (2007) OLIGO 7 primer analysis software. Methods Mol Biol 402:35–60

    CAS  PubMed  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:E498–E505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang WH, Hori T, Toyoda A, Kato J, Popendorf K, Sakakibara Y, Fujiyama A, Fukagawa T (2010) Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res 20:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Wolfgruber TK, Presting GG (2013) Tandem repeats derived from centromeric retrotransposons. BMC Genomics 14:142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Cao S, Wang X, Huang S, Wang Y, Liu Z, Liu W, Leng X, Peng Y, Wang N, Wang Y, Ma Z, Xu X, Zhang F, Xue H, Zhong H, Wang Y, Zhang K, Velt A, Avia K, Holtgräwe D, Grimplet J, Matus JT, Ware D, Wu X, Wang H, Liu C, Fang Y, Rustenholz C, Cheng Z, Xiao H, Zhou Y (2023) The complete reference genome for grapevine (Vitis vinifera L) genetics and breeding. Hortic Res 10:uhad061

    PubMed  PubMed Central  Google Scholar 

  • Strachan T, Webb D, Dover GA (1985) Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO J 4:1701–1708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talbert P, Henikoff S (2010) Centromeres convert but don’t cross. PLoS Biol 8:e1000326

    PubMed  PubMed Central  Google Scholar 

  • Tek AL, Song J, Macas J, Jiang J (2005) Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics 170:1231–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ventura M, Antonacci F, Cardone MF, Stanyon R, D’Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M (2007) Evolutionary formation of new centromeres in macaque. Science 316:243–246

    CAS  PubMed  Google Scholar 

  • Wang K, Zhang W, Jiang Y, Zhang T (2013) Systematic application of DNA fiber-FISH technique in cotton. PLoS ONE 8:e75674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Kikuchi S, Yan H, Zhang W, Rosenbaum H, Iniguez AL, Jiang J (2011) Euchromatic subdomains in rice centromeres are associated with genes and transcription. Plant Cell 23:4054–4064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia QM, Miao LK, Xie KD, Yin ZP, Wu XM, Chen CL, Grosser JW, Guo WW (2020) Localization and characterization of Citrus centromeres by combining half-tetrad analysis and CenH3-associated sequence profiling. Plant Cell Rep 39:1609–1622

    CAS  PubMed  Google Scholar 

  • Yan H, Jin W, Nagaki K, Tian S, Ouyang S, Buell CR, Talbert PB, Henikoff S, Jiang J (2005) Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17:3227–3238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Talbert PB, Lee HR, Jett J, Henikoff S, Chen F, Jiang J (2008) Intergenic locations of rice centromeric chromatin. PLoS Biol 6:e286

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhao H, Zhang T, Zeng Z, Zhang P, Zhu B, Han Y, Braz GT, Casler MD, Schmutz J, Jiang J (2018) Amplification and adaptation of centromeric repeats in polyploid switchgrass species. New Phytol 218:1645–1657

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    PubMed  PubMed Central  Google Scholar 

  • Zhang T, Talbert PB, Zhang W, Wu Y, Yang Z, Henikoff JG, Henikoff S, Jiang J (2013) The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci USA 110:E4875–E4883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Koblížková A, Wang K, Gong Z, Oliveira L, Torres GA, Wu Y, Zhang W, Novák P, Buell CR, Macas J, Jiang J (2014) Boom-bust turnovers of megabase-sized centromeric DNA in Solanum species: rapid evolution of DNA sequences associated with centromeres. Plant Cell 26:1436–1447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Liu G, Zhao H, Braz GT, Jiang J (2021) Chorus2: design of genome-scale oligonucleotide-based probes for fluorescence in situ hybridization. Plant Biotechnol J 19:1967–1978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Liu Y, Guo X, Birchler JA, Han F, Su H (2022) Centromeres: from chromosome biology to biotechnology applications and synthetic genomes in plants. Plant Biotechnol J 20:2051–2063

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (32272647), Jiangsu Agricultural Industry Technology System (JATS [2022] 457), and Priority Academic Program Development of Jiangsu Higher Education Institutions (RAPD). We are grateful to Zengjun Qi (the State Key Laboratory of Crop Genetic & Germplasm Enhancement) for FISH analysis instruction.

Author information

Authors and Affiliations

Authors

Contributions

DP, WHF, and XY conducted the experiments and analyzed data. DP wrote the manuscript. JGF designed and coordinated this study. XHM revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jinggui Fang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest associated with this work.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, D., Yu, X., Fu, W. et al. The evolution and formation of centromeric repeats analysis in Vitis vinifera. Planta 259, 99 (2024). https://doi.org/10.1007/s00425-024-04374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-024-04374-6

Keywords

Navigation