Skip to main content
Log in

Evolution of the Tóxicos en Levadura 63 (TL63) gene family in plants and functional characterization of Arabidopsis thaliana TL63 under oxidative stress

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

TL63 orthologs were angiosperm specific and had undergone motifs loss and gain, and increased purifying selection. AtTL63 was involved in the response of yeast and Arabidopsis plants to oxidative stress.

Abstract

The Tóxicos en Levadura (TL) family, a class of E3 ubiquitin ligases with typical RING-H2 type zinc finger structure, plays a pivotal role in mediating physiological processes and responding to stress in plants. However, the evolution and function of TL63 remain unclear. In this study, TL63 homologs were dated roughly back to the origin of land plants and confirmed to have subjected to the gain and loss of motifs and increased purifying selection. Phylogenetic analysis displayed that 279 TL63s could be divided into four main clades (Clade A-D). Notably, the ancestral tandem TL40/41 cluster contributed to the expansion of modern Brassicaceae TL40/41. The substitution rate tests revealed that the TL63 lineage was evidently different from other lineages. The codon usage index exhibited that monocotyledons preferred to use not A3s and T3s, but C3s, G3s, CAI, CBI and Fop. Sequence analysis showed that the TL63 homologs had conserved TM and GLD motifs and RING-H2 domain whose key amino acid residues accounted for the high average abundance. Particularly, Arabidopsis thaliana TL63 (AtTL63) was located in the nuclei, cell membranes and peroxisomes and expressed universally and significantly throughout A. thaliana development. Under H2O2 treatment, low or moderate expression of the AtTL63 held beneficial effects on the growth and viability of yeast cells and the mutation or overexpression of the AtTL63 positively affected the growth of A. thaliana plants. In brief, this study could supply useful insight into the evolution of the plant TL63s and the AtTL63 functions under oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data generated in this study are included in this publishing article and its supplementary information. Further inquiries can be directed to the corresponding author.

Abbreviations

TL:

Tóxicos en Levadura

ROS:

Reactive oxygen species

WGDs:

Whole genome duplications

ώ = dN/dS :

 Nonsynonymous/synonymous substitutions

RSCU:

Relative synonymous codon usage

References

  • Aguilar-Hernandez V, Aguilar-Henonin L, Guzman P (2011) Diversity in the architecture of ATLs, a family of plant ubiquitin-ligases, leads to recognition and targeting of substrates in different cellular environments. PLoS One 6(8):e23934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Idaboy JR, Galano A (2012) On the chemical repair of DNA radicals by glutathione: hydrogen vs electron transfer. J Phys Chem B 116(31):9316–9325

    Article  CAS  PubMed  Google Scholar 

  • An JP, Liu X, Song LQ, You CX, Wang XF, Hao YJ (2017) Apple RING finger E3 ubiquitin ligase MdMIEL1 negatively regulates salt and oxidative stresses tolerance. J Plant Biol 60(2):137–145

    Article  CAS  Google Scholar 

  • Ariani P, Regaiolo A, Lovato A, Giorgetti A, Porceddu A, Camiolo S, Wong D, Castellarin S, Vandelle E, Polverari A (2016) Genome-wide characterisation and expression profile of the grapevine ATL ubiquitin ligase family reveal biotic and abiotic stress-responsive and development-related members. Sci Rep-UK 6:38260

    Article  CAS  Google Scholar 

  • Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43(W1):W39–W49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugiere N, Zhang WJ, Xu QZ, Scolaro EJ, Lu C, Kahsay RY, Kise R, Trecker L, Williams RW, Hakimi S, Niu XP, Lafitte R, Habben JE (2017) Overexpression of RING domain E3 ligase ZmXerico1 confers drought tolerance through regulation of ABA homeostasis. Plant Physiol 175(3):1350–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenci A, Guignon V, Roux N, Rouard M (2014) Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol 85(1–2):63–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ, Chen JY (2011) Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 234(2):377–390

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165

    Article  CAS  PubMed  Google Scholar 

  • Du B, Nie N, Sun S, Hu Y, Bai Y, He S, Zhao N, Liu Q, Zhai H (2021) A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis. Plant Sci 304:110802

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Meng Q, Xu J, Tang H, Tang S, Zhang H, Huang J (2015) Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol Biol 87(4–5):441–458

    Article  CAS  PubMed  Google Scholar 

  • Galano A (2015) Free radicals induced oxidative stress at a molecular level: the current status, challenges and perspectives of computational chemistry based protocols. J Mex Chem Soc 59(4):231–262

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gu YN, Innes RW (2012) The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. Plant Cell 24(11):4717–4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman P (2012) The prolific ATL family of RING-H2 ubiquitin ligases. Plant Signal Behav 7(8):1014–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn A, Kilian J, Mohrholz A, Ladwig F, Peschke F, Dautel R, Harter K, Berendzen KW, Wanke D (2013) Plant core environmental stress response genes are systemically coordinated during abiotic stresses. Int J Mol Sci 14(4):7617–7641

    Article  PubMed  PubMed Central  Google Scholar 

  • Han G, Qiao Z, Li Y, Yang Z, Wang C, Zhang Y, Liu L, Wang B (2022) RING zinc finger proteins in plant abiotic stress tolerance. Front Plant Sci 13:877011

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu B, Jin JP, Guo AY, Zhang H, Luo JC, Gao G (2015) GSDS 20: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Chen Z, He MM, Tao MQ, Sun J, Guo SR (2019) Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol 19(1):414

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarvela AMC, Hinman VF (2015) Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks. EvoDevo 6(1):3

    Article  Google Scholar 

  • Jeffares DC, Tomiczek B, Sojo V, dos Reis M (2015) A beginners guide to estimating the non-synonymous to synonymous rate ratio of all protein-coding genes in a genome. Methods Mol Biol 1201(1):65–90

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Chu Z (2018) Comparative analysis of plant MKK gene family reveals novel expansion mechanism of the members and sheds new light on functional conservation. BMC Genom 19(1):407

    Article  Google Scholar 

  • Jiang M, Li P, Wang W (2021) Comparative analysis of MAPK and MKK gene families reveals differential evolutionary patterns in Brachypodium distachyon inbred lines. PeerJ 9(1):e11238

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Wen G, Zhao C (2022) Phylogeny and evolution of plant Phytochrome Interacting Factors (PIFs) gene family and functional analyses of PIFs in Brachypodium distachyon. Plant Cell Rep 41(5):1209–1227

    Article  CAS  PubMed  Google Scholar 

  • Jiang M, Jian J, Zhou C, Li L, Wang Y, Zhang W, Song Z, Yang J (2023) Does integument arise de novo or from pre-existing structures? ——Insights from the key regulatory genes controlling integument development. Front Plant Sci 13:1078248

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao YN, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang HY, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):U97–U113

    Article  Google Scholar 

  • Ju HW, Min JH, Chung MS, Kim CS (2013) The atrzf1 mutation of the novel RING-type E3 ubiquitin ligase increases proline contents and enhances drought tolerance in Arabidopsis. Plant Sci 203:1–7

    Article  PubMed  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh S, Hong C, Tsunoda Y, Murata K, Takai R, Minami E, Yamazaki T, Katoh E (2003) High precision NMR structure and function of the RING-H2 finger domain of EL5, a rice protein whose expression is increased upon exposure to pathogen-derived oligosaccharides. J Biol Chem 278(17):15341–15348

    Article  CAS  PubMed  Google Scholar 

  • Khanna K, Bhardwaj R, Alam P, Reiter RJ, Ahmad P (2023) Phytomelatonin: a master regulator for plant oxidative stress management. Plant Physiol Biochem 196:260–269

    Article  CAS  PubMed  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50(2):347–363

    Article  CAS  PubMed  Google Scholar 

  • Kiriya K, Tsuyuzaki H, Sato M (2017) Module-based systematic construction of plasmids for episomal gene expression in fission yeast. Gene 637:14–24

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47(3):343–355

    Article  CAS  PubMed  Google Scholar 

  • Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, Li C (2011) The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response. Plant Physiol 156(2):550–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim CW, Baek W, Lee SC (2018) Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance. Plant J 96(2):452–467

    Article  CAS  PubMed  Google Scholar 

  • Liu KM, Wang L, Xu YY, Chen N, Ma QB, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226(4):1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Liu JP, Zhang CC, Wei CC, Liu X, Wang MG, Yu FF, Xie Q, Tu JM (2016) The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol 170(1):429–443

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Li YY, Zhou ZC, Xiang X, Liu X, Wang J, Hu ZR, Xiang SP, Li W, Xiao QZ, Wang Y, Hu RS, Zhao Q (2021) Tobacco transcription factor bHLH123 improves salt tolerance by activating NADPH oxidase NtRbohE expression. Plant Physiol 186(3):1706–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu SX, Wang P, Nai GJ, Li YM, Su YL, Liang GP, Chen BH, Mao J (2022) Insight into VvGH3 genes evolutional relationship from monocotyledons and dicotyledons reveals that VvGH3-9 negatively regulates the drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem 172:70–86

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H (2015) Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genom 16:58

    Article  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    Article  CAS  PubMed  Google Scholar 

  • Pardo-Hernandez M, Lopez-Delacalle M, Rivero RM (2020) ROS and NO regulation by melatonin under abiotic stress in plants. Antioxidants (basel) 9(11):1078

    Article  CAS  PubMed  Google Scholar 

  • Park YC, Chapagain S, Jang CS (2018a) The microtubule-associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt-stress response through the regulation of OCPI2 (O. sativa chymotrypsin protease inhibitor 2). Planta 247(4):875–886

    Article  CAS  PubMed  Google Scholar 

  • Park YC, Moon JC, Chapagain S, Oh DG, Kim JJ, Jang CS (2018b) Role of salt-induced RING finger protein 3 (OsSIRP3), a negative regulator of salinity stress response by modulating the level of its target proteins. Environ Exp Bot 155:21–30

    Article  CAS  Google Scholar 

  • Park YC, Lim SD, Moon JC, Jang CS (2019) A rice really interesting new gene H2-type E3 ligase, OsSIRH2-14, enhances salinity tolerance via ubiquitin/26S proteasome-mediated degradation of salt-related proteins. Plant Cell Environ 42(11):3061–3076

    Article  CAS  PubMed  Google Scholar 

  • Qian WF, Zhang JZ (2009) Protein subcellular relocalization in the evolution of yeast singleton and duplicate genes. Genome Biol Evol 1:198–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao X, Li QH, Yin H, Qi KJ, Li LT, Wang RZ, Zhang SL, Paterson AH (2019) Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol 20:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(1):W116–W120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren L, Wang MR, Wang QC (2021) ROS-induced oxidative stress in plant cryopreservation: occurrence and alleviation. Planta 254(6):124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren JX, Zhang P, Dai YB, Liu XH, Lu SX, Guo LL, Gou HM, Mao J (2023) Evolution of the 14-3-3 gene family in monocotyledons and dicotyledons and validation of MdGRF13 function in transgenic Arabidopsis thaliana. Plant Cell Rep 42(8):1345–1364

    Article  CAS  PubMed  Google Scholar 

  • Sahu SS, Loaiza CD, Kaundal R (2019) Plant-mSubP: a computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches. Aob Plants 12(3):plz068

    Article  PubMed  PubMed Central  Google Scholar 

  • Shockey J, Browse J (2011) Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. Plant J 66(1):143–160

    Article  CAS  PubMed  Google Scholar 

  • Shu K, Yang W (2017) E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses. Plant Cell Physiol 58(9):1461–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137(1):13–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh JY, Kim SJ, Oh TR, Cho SK, Yang SW, Kim WT (2016) Arabidopsis Toxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress. Biochem Biophys Res Commun 469(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Lian XD, Cheng J, Zeng WF, Zheng XB, Wang W, Ye X, Li JD, Li ZQ, Zhang LL, Feng JC (2019) Genome-wide identification and transcriptome profiling reveal that E3 ubiquitin ligase genes relevant to ethylene, auxin and abscisic acid are differentially expressed in the fruits of melting flesh and stony hard peach varieties. BMC Genom 20(1):892

    Article  CAS  Google Scholar 

  • Tang HB, Bowers JE, Wang XY, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320(5875):486–488

    Article  CAS  PubMed  Google Scholar 

  • Tian MM, Lou LJ, Liu LJ, Yu FF, Zhao QZ, Zhang HW, Wu YR, Tang SY, Xia R, Zhu BG, Serino G, Xie Q (2015) The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt-stress response in Arabidopsis thaliana. Plant J 82(1):81–92

    Article  PubMed  Google Scholar 

  • Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A, Van de Peer Y, Coppens F, Vandepoele K (2018) PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res 46(D1):D1190–D1196

    Article  PubMed  Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10(10):725–732

    Article  PubMed  Google Scholar 

  • Xia ZL, Su XH, Liu JJ, Wang MP (2013) The RING-H2 finger gene 1 (RHF1) encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum. Genetica 141(1–3):11–21

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556

    CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Yang S, Bian L, Yu K, Meng X, Zhang G, Xu W, Yao W, Guo D (2021) Identification of C3H2C3-type RING E3 ubiquitin ligase in grapevine and characterization of drought resistance function of VyRCHC114. BMC Plant Biol 21(1):422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YY, Yang CW, Li Y, Zheng NY, Chen H, Zhao QZ, Gao T, Guo HS, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19(6):1912–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HW, Cui F, Wu YR, Lou LJ, Liu LJ, Tian MM, Ning Y, Shu K, Tang SY, Xie Q (2015) The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell 27(1):214–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li P, Niu Y, Zhang Y, Wen G, Zhao C, Jiang M (2023) Evolution of the WRKY66 gene family and its mutations generated by the CRISPR/Cas9 system increase the sensitivity to salt stress in Arabidopsis. Int J Mol Sci 24(4):3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Shanghai Sailing Program (19YF1414800) to Min Jiang. The funding body had no role in study design, analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MJ and CZ conceived and designed the experiments. PL and YZ performed most of the experiments and analyzed the data. MJ, PL and YZ wrote the manuscript. MJ and CZ reviewed and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changling Zhao or Min Jiang.

Ethics declarations

Conflict of interest

Authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

425_2023_4243_MOESM1_ESM.pdf

Fig. S1 Sequence logos of the conserved (a) and unique (b) domains/motifs in TL63 homologs. The height of the letter indicates its relative frequency at the given position (x -axis) in the domain/motif. (PDF 2516 KB)

425_2023_4243_MOESM2_ESM.pdf

Fig. S2 Sequence features of TM (a), GLD (b) and RING (c) motifs of TL63s in different phylogenetic groups. The red star indicates residues of functional or structural importance based on phylogenetic conservations. (PDF 1266 KB)

425_2023_4243_MOESM3_ESM.pdf

Fig. S3 Determination of the relative AtTL63 expression level. a The expression of AtTL63 in control (pREP41 and pREP81), pREP41- AtTL63 and pREP81- AtTL63 yeast cells, grown in normal condition, assessed by real-time PCR. Values are means ±SD of three independent experiments. Student’s t test was performed (**P < 0.01). b The expression of AtTL63 in wild type (WT), tl63 and AtTL63-OE plants. Experiments were conducted for three biological replicates. Data are the means of ±SD. Student’s t test was performed (**P < 0.01). (PDF 3524 KB)

Supplementary file4 (DOCX 20 KB)

Supplementary file5 (DOCX 42 KB)

Supplementary file6 (DOCX 15 KB)

Supplementary file7 (DOCX 16 KB)

Supplementary file8 (XLSX 49 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhang, Y., Zhao, C. et al. Evolution of the Tóxicos en Levadura 63 (TL63) gene family in plants and functional characterization of Arabidopsis thaliana TL63 under oxidative stress. Planta 258, 87 (2023). https://doi.org/10.1007/s00425-023-04243-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04243-8

Keywords

Navigation