Skip to main content

Advertisement

Log in

Rethinking underutilized cereal crops: pan-omics integration and green system biology

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Due to harsh lifestyle changes, in the present era, nutritional security is needed along with food security so it is necessary to include underutilized cereal crops (UCCs) in our daily diet to counteract the rising danger of human metabolic illness. We can attain both the goal of zero hunger and nutritional security by developing improved UCCs using advanced pan-omics (genomics, transcriptomics, proteomics, metabolomics, nutrigenomics, phenomics and ionomics) practices.

Abstract

Plant sciences research progressed profoundly since the last few decades with the introduction of advanced technologies and approaches, addressing issues of food demand of the growing population, nutritional security challenges and climate change. However, throughout the expansion and popularization of commonly consumed major cereal crops such as wheat and rice, other cereal crops such as millet, rye, sorghum, and others were impeded, despite their potential medicinal and nutraceutical qualities. Undoubtedly neglected underutilized cereal crops (UCCs) also have the capability to withstand diverse climate change. To relieve the burden of major crops, it is necessary to introduce the new crops in our diet in the way of UCCs. Introgression of agronomically and nutritionally important traits by pan-omics approaches in UCCs could be a defining moment for the population’s well-being on the globe. This review discusses the importance of underutilized cereal crops, as well as the application of contemporary omics techniques and advanced bioinformatics tools that could open up new avenues for future study and be valuable assets in the development and usage of UCCs in the perspective of green system biology. The increased and improved use of UCCs is dependent on number of factors that necessitate a concerted research effort in agricultural sciences. The emergence of functional genomics with molecular genetics might gear toward the reawakening of interest in underutilized cereals crops. The need of this era is to focus on potential UCCs in advanced agriculture and breeding programmes. Hence, targeting the UCCs, might provide a bright future for better health and scientific rationale for its use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Abah CR, Ishiwu CN, Obiegbuna JE, Oladejo AA (2020) Nutritional composition, functional properties and food applications of millet grains. J Asian Food Sci J 14(2):9–19

    Article  Google Scholar 

  • Adhikari S, Saha S, Biswas A, Rana TS, Bandyopadhyay TK, Ghosh P (2017) Application of molecular markers in plant genome analysis: a review The Nucleus 60(3):283–297

  • Agah S, Kim H, Mertens-Talcott SU, Awika JM (2017) Complementary cereals and legumes for health: synergistic interaction of sorghum flavones and cowpea flavonols against LPS-induced inflammation in colonic myofibroblasts. Mol Nutri Food Res 61(7):1600625

    Article  Google Scholar 

  • Antony Ceasar S, Maharajan T, Ajeesh Krishna TP, Ramakrishnan M, Victor Roch G, Satish L, Ignacimuthu S (2018) Finger millet [Eleusine coracana (L.) Gaertn.] improvement: current status and future interventions of whole genome sequence. Front plant Sci 9:1054

  • Anup CP, Kini KR (2016) Analysis of dynamics of proteome in resistant cultivar of pearl millet seedlings during Sclerospora graminicola infection. J App Biol Biotechnol 4:67–71

  • Anup CP, Melvin P, Shilpa N, Gandhi MN, Jadhav M, Ali H, Kini KR (2015) Proteomic analysis of elicitation of downy mildew disease resistance in pearl millet by seed priming with β-aminobutyric acid and Pseudomonas fluorescens. J Proteom 120:58–74

    Article  CAS  Google Scholar 

  • Arbex PM, de Castro Moreira ME, Toledo RCL, de Morais CL, Pinheiro-Santana HM, dos AnjosBenjamin L, Martino HSD (2018) Extruded sorghum flour (Sorghum bicolor L.) modulate adiposity and inflammation in high fat diet-induced obese rats. J. Funct. Foods 42:346–355

    Article  CAS  Google Scholar 

  • Bangoura ML, Nsor-Atindana J, Ming Z, Wei P, Mothibe KJ, Xue Z (2012) Starch functional properties and resistant starch from foxtail millet [Setariaitalica (L.) P. Beauv] species. Pak J Nutr 11(10):821–830

    Article  CAS  Google Scholar 

  • Barley (2023) Wikimedia Foundation Available at https://en.wikipedia.org/wiki/Barley#Cultivation

  • Baroncelli R, Amby DB, Zapparata A, Sarrocco S, Vannacci G, Le Floch G, Harrison RJ, Holub E, Sukno SA, Sreenivasaprasad S, Thon MR (2016) Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genom 17(1):1–7

    Article  Google Scholar 

  • Bazile D, Jacobsen SE, Verniau A (2016) The global expansion of quinoa: trends and limits. Front Plant Sci 7:622

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger B, Parent B, Tester M (2010) High throughput shoot imaging to study drought responses. J Exp Bot 61:3519–3528

    Article  CAS  PubMed  Google Scholar 

  • Caballero B, Trugo L, Finglas P (2003) Encyclopedia of food sciences and nutrition. Elsevier Science BV, Amsterdam, pp 1–10

    Google Scholar 

  • Chang YW, Alli I, Konishi Y, Ziomek E (2011) Characterization of protein fractions from chickpea (Cicer arietinum L.) and oat (Avena sativa L.) seeds using proteomic techniques. Food Res Int 44(9):3094–3104

    CAS  Google Scholar 

  • Charu L, Sahu PP, Manoj P (2010) Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem Biophys Res Commun 393(4):720–727

    Article  Google Scholar 

  • Chaudhary J, Patil GB, Sonah H, Deshmukh RK, Vuong TD, Valliyodan B, Nguyen HT (2015) Expanding omics resources for improvement of soybean seed composition traits. Front Plant Sci 6:1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wang J, Yao L, Li B, Ma X, Si E, Yang K, Li C, Shang X, Meng Y, Wang H (2022) Combined proteomic and metabolomic analysis of the molecular mechanism underlying the response to salt stress during seed germination in barley. Int J Mol Sci 23(18):10515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng A, Chai HH, Ho WK, Bamba ASA, Feldman A, Kendabie P, Massawe F (2017) Molecular marker technology for genetic improvement of underutilised crops. In: Abdullah S, Chai-Ling H, Wagstaff C (ed) Crop improvement. Springer, Cham 47–70

  • Chivenge P, Mabhaudhi T, Modi AT, Mafongoya P (2015) The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int J Environ Res Public Health 12(6):5685–5711

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen SA, Pratt DB, Pratt C, Nelson PT, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Resour 5(2):82–95. https://doi.org/10.1007/s00425-023-04242-9

  • Chukwurah PN, Uyoh EA, Usen IN, Ekerette EE, Ogbonna NC (2016) Assessment of intra and inter species variation in antioxidant composition and activity in marginalized fonio millet (Digitaria spp.). J Cereals Oilseeds 7(1):1–6

    Article  CAS  Google Scholar 

  • Chung CP, Hsu HY, Huang DW, Hsu HH, Lin JT, Shih CK, Chiang W (2010) Ethyl acetate fraction of adlay bran ethanolic extract inhibits oncogene expression and suppresses DMH-induced preneoplastic lesions of the colon in F344 rats through an anti-inflammatory pathway. J Agric Food Chem 58(13):7616–7623

    Article  CAS  PubMed  Google Scholar 

  • Das RR, Pradhan S, Parida A (2020) De-novo transcriptome analysis unveils differentially expressed genes regulating drought and salt stress response in Panicum sumatrense. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Dawson IK, Hedley PE, Guarino L, Jaenicke H (2009) Does biotechnology have a role in the promotion of underutilised crops? Food Policy 34(4):319–328

    Article  Google Scholar 

  • Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Devos KM, Wang ZM, Beales J, Sasaki T, Gale MD (1998) Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet 96(1):63–68

    Article  CAS  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  CAS  PubMed  Google Scholar 

  • Doust A, Diao X (2017) Genetics and genomics of Setaria. Springer International Publishing, Cham, Switzerland

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149(1):137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutilh BE (2018) Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises and challenges. Brief Bioinform 19(1)

  • Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7:e1002372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eleusine coracana (2023) Wikimedia Foundation Available at https://en.wikipedia.org/wiki/Eleusine_coracana#Cultivation

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2020) Archived from the original on 10 February 2012. Retrieved 9 July 2020 [database on the internet]. Available at https://www.fao.org/faostat/en/#data/QCL

  • Finkel E (2009) With phenomics plant scientists hope to shift breeding into overdrive. Science (new York, NY) 325:380–381

    Article  CAS  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  CAS  PubMed  Google Scholar 

  • Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J (2017) Pan-genomic analysis permits differentiation of virulent and non-virulent strains of Xanthomonas arboricola that cohabit Prunus spp. and elucidate bacterial virulence factors. Front Microbiol 13(8):573

    Google Scholar 

  • Gellrich C, Schieberle P, Wieser H (2002) Biochemical characterization and quantification of the storage protein (secalin) types in rye flour. Cereal Chem 80(1):102–109

    Article  Google Scholar 

  • Ghatak A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, Postl W, Schröfl A, Desai N, Varshney RK, Weckwerth W (2016) Comprehensive tissue-specific proteome analysis of drought stress responses in (Pennisetum glaucum L.) R. Br. (Pearl millet). J Proteom 143:122–135

    Article  CAS  Google Scholar 

  • Girish C, Meena RK, Mahima D, Mamta K (2014) Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. Curr Sci 107(7):1109–1111

    Google Scholar 

  • Glew RH, Laabes EP, Presley JM, Schulze J, Andrews R, Wang YC, Chang YC, Chuang LT (2013) Fatty acid, amino acid, mineral and antioxidant contents of acha (Digitaria exilis) grown on the Jos Plateau, Nigeria. Int J Nutr Metabol 5(1):1

    CAS  Google Scholar 

  • Gong L, Chen W, Gao Y, Liu X, Zhang H, Xu C, Yu S, Zhang Q, Luo J (2013) Genetic analysis of the metabolome exemplified using a rice population. Proc Natl Acad Sci 110:20320–20325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalan C, Ramasastri BV, Balasubramanian SC (1989) Nutritive value of Indian foods: National Institute of Nutrition. Indian Council of Medical Research, Hyderabad, India Revised Ed

  • Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:431–487

    Google Scholar 

  • Gupta R (2014) RAGI, a boon to nutritional security. Indian Agriculture Research Institute Pusa Campus, New Delhi

    Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Google Scholar 

  • Han F, Sun M, He W, Guo S, Feng J, Wang H, Yang Q, Pan H, Lou Y, Zhuge Y (2022) Transcriptome analysis reveals molecular mechanisms under salt stress in leaves of Foxtail Millet (Setaria italica L.). Plants 11(14):1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegde PS, Chandra TS (2005a) ESR spectroscopic study reveals higher free radical quenching potential in kodo millet (Paspalum scrobiculatum) compared to other millets. Food Chem 92(1):177–182

  • Hegde PS, Rajasekaran NS, Chandra TS (2005b) Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan-induced rats. Nutr Res 25(12):1109–1120

    Article  CAS  Google Scholar 

  • Heidarvand L, Maali-Amiri R (2013) Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. J Plant Physiol 170(5):459–469

    Article  CAS  PubMed  Google Scholar 

  • Heuze V, Tran G, Sauvant D, Bastianelli D, Lebas F (2015) Foxtail millet (Setaria italica), grain

  • Higgins JA (2004) Resistant starch: metabolic effects and potential health benefits. J AOAC Int 87(3):761–768

    Article  CAS  PubMed  Google Scholar 

  • Higgins JA (2014) Resistant starch and energy balance: impact on weight loss and maintenance. Crit Rev Food Sci Nutr 54(9):1158–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Hossain P, Kawar B, Nahas ME (2007) Obesity and diabetics in the developing world—a growing challenge. N Engl J Med 356:213–215

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Sun Z, Li Y, Wang Y, Ling H, Xing G, Li H (2017) Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum; Poaceae). Appl Plant Sci 5(7):1600137

    Article  Google Scholar 

  • Huang CW, Lin YT, Ding ST, Lo LL, Wang PH, Lin EC, Liu FW, Lu YW (2015) Effecient SNP discovery by combining microarray and lab-on-a-chip data for animal breeding and selection. Microarrays 4:570–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulse JH, Laing EM, Pearson OE (1980) Sorghum and the millets: their composition and nutritive value. Academic Press, New York

    Google Scholar 

  • Ignatov AN, Kyrova EI, Vinogradova SV, Kamionskaya AM, Schaad NW, Luster DG (2015) Draft genome sequence of Xanthomonas arboricola strain 3004, a causal agent of bacterial disease on barley. Genome Announc 3(1):e01572-e1614

    Article  PubMed  PubMed Central  Google Scholar 

  • Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P (2015) Plant transcriptomics and responses to environmental stress: an overview. J Genet 94(3):525–537

    Article  CAS  PubMed  Google Scholar 

  • Jaenicke H, Höschle-Zeledon I (2006) Strategic Framework for Underutilised Plant Species Research and Development with Special Reference to Asia and the Pacific, and to Sub-Saharan Africa. International Centre for Underutilised Crops, Colombo, Sri Lanka and the Global Facilitation Unit for Underutilized Species, Rome

  • Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, Kumar D (2018) Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum L.) and development of web-genomic resources. Sci Rep 8(1):1–16

    Google Scholar 

  • Jaiswal AK, Tiwari S, Tavares GC, da Silva WM, de Castro Oliveira L, Ibraim IC, Guimarães LC, Gomide AC, Jamal SB, Pantoja Y, Tiwary BK (2020) Pan-omics focused to Crick’s central dogma. In: Barh D, Tiwari S, Soares S, Azevedo V (ed) Pan-genomics: applications, challenges, and future prospects. Academic Press (1): 1–41

  • Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ (2008) Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 87:39–51

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Lim FL, Finkler A, Fromm H, Slabas AR, Knight MR (2014) Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genom 15(1):1–19

    Article  Google Scholar 

  • Kalinova J, Moudry J (2006) Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum Nutr 61(1):43–47

    Article  Google Scholar 

  • Kang J, Price WE, Ashton J, Tapsell LC, Johnson S (2016) Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chem 15(211):215–226

    Article  Google Scholar 

  • Kaput J (2007) Application of nutrigenomic concepts to type 2 diabetes mellitus. Nutr Metab Cardiovasc 17:89–103

    Article  CAS  Google Scholar 

  • Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR (2010) Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Annu Appl Stat 4(4):1797

    Google Scholar 

  • Krishna Kumari S, Thayumanavan B (1998) Characterization of starches of proso, foxtail, barnyard, kodo, and little millets. Plant Foods Hum Nutr 53:47–56

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Mirza N, Charan T, Sharma N, Gaur VS (2014) Isolation, characterization and immunolocalization of a seed dominant CaM from finger millet (Eleusine coracana L. Gartn.) for studying its functional role in differential accumulation of calcium in developing grains. Appl Biochem Biotechnol 172(6):2955–2973

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Pratap A, Kumar S (2015) Plant phenomics: an overview. In: Kumar J, Pratap A, Kumar S (eds) Phenomics in crop plants: trends, options and limitations. Springer, Berlin

    Chapter  Google Scholar 

  • Kunkel G (1984) Plants for human consumption; an annotated checklist of the edible phanerogams and ferns. Koeltz Scientific Books, Koenigstein

    Google Scholar 

  • Kuo CC, Shih MC, Kuo YH, Chiang W (2001) Antagonism of free-radical-induced damage of adlay seed and its antiproliferative effect in human histolytic lymphoma U937 monocytic cells. J Agric Food Chem 49:1564–1570

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42(11):1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Li SC, Chen CM, Lin SH, Chiang W, Shih CK (2011) Effects of adlay bran and its ethanolic extract and residue on preneoplastic lesions of the colon in rats. J Sci Food Agric 91(3):547–552

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 2(10):1045–1052

    Article  Google Scholar 

  • Li J, Wang Y, Wang L, Zhu J, Deng J, Tang R, Chen G (2021) Integration of transcriptomic and proteomic analyses for finger millet [Eleusine coracana (L.) Gaertn.] in response to drought stress. PLoS ONE 16(2):e0247181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang K, Liang S, Zhu H (2020) Comparative proteomics analysis of the effect of selenium treatment on the quality of foxtail millet. LWT 131:109691

    Article  CAS  Google Scholar 

  • Liu J, Zhang D, Zhang Y, Zhou H, Chen P, Yuan Y, Yang Q, Zhao L, Feng B (2022 ) Dynamic and comparative transcriptome analyses reveal key factors contributing to cadmium tolerance in broomcorn millet. Int J Mol Sci 23(11):6148

  • Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. Plos Comput Biol 13(5):e1005457

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma W, Liu Z, Beier S, Houben A, Carpentier S (2021) Identification of rye B chromosome-associated peptides by mass spectrometry. New Phytol 230(6):2179–2185

    Article  CAS  PubMed  Google Scholar 

  • Maharajan T, Antony Ceasar S, Ajeesh Krishna TP, Ignacimuthu S (2021) Finger millet [Eleusine coracana (L.) Gaertn]: an orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Front Sustain Food Syst 5:684447

    Article  Google Scholar 

  • Mayes S, Massawe FJ, Alderson PG, Roberts JA, Azam-Ali SN, Hermann M (2012) The potential for underutilized crops to improve security of food production. J Exp Bot 63(3):1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Miah G, Rai MY, Ismail MR, Puteh AB, Rahim HA, Islam KN, Latif MA (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14(11):22499–22528

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitharwal S, Kumar S, Chauhan K (2021) Nutritional, polyphenolic composition and in vitro digestibility of finger millet (Eleusine coracana L.) with its potential food applications: a review. Food Biosci 44:101382

    Article  CAS  Google Scholar 

  • Moe KT, Kwon SW, Park YJ (2012) Trends in genomics and molecular marker systems for the development of some underutilized crops. Genes Genom 34(5):451–466

    Article  CAS  Google Scholar 

  • Mohamed TK, Zhu K, Issoufou A, Fatmata T, Zhou H (2009) Functionality, in vitro digestibility and physicochemical properties of two varieties of defatted foxtail millet protein concentrates. Int J Mol Sci 10(12):5224–5238

    Article  CAS  PubMed Central  Google Scholar 

  • Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CK, Visendi P, Lai K, Doležel J, Batley J, Edwards D (2017) The pangenome of hexaploid bread wheat. Plant J 90(5):1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Munir F, Saba NU, Arveen M, Siddiqa A, Ahmad J, Amir R (2020) Pan-genomics of plants and its applications. In: Barh D, Tiwari S, Soares S, Azevedo V (ed) Pan-genomics: applications, challenges, and future prospects. Academic Press (1): 285–306

  • Muthamilarasan M, Dhaka A, Yada R, Prasad M (2016) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Singh NK, Prasad, M (2019) Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: a climate change perspective. In: Kumar D (ed) Advances in genetics, Academic Press 103:1–38

  • Muthamilarasan M, Suresh BV, Singh RK, Choudhary P, Aggarwal PR, Prasad M (2022) Comparative transcriptome profiling of two contrasting foxtail millet cultivars provides insights into molecular mechanisms underlying dehydration stress response. J Plant Growth Regul (41):1–9

  • National Research Council (1996) Lost crops of Africa. Volume I: Grains. The National Academies Press, Washington, DC

  • N’Dri D, Mazzeo T, Zaupa M, Ferracane R, Fogliano V, Pellegrini N (2013) Effect of cooking on the total antioxidant capacity and phenolic profile of some whole-meal African cereals. J Sci Food Agric 93(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Neeha VS, Kinth P (2013) Nutrigenomics research: a review. J Food Sci Technol 50(3):415–428

    Article  CAS  PubMed  Google Scholar 

  • Nielsen LJ, Stuart P, Pičmanová M, Rasmussen S, Olsen CE, Harholt J, Bjarnholt N (2016) Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. BMC Genom 17(1):1–24

    Article  Google Scholar 

  • Oat (2023) Wikimedia Foundation Available at https://en.wikipedia.org/wiki/oat#Cultivation

  • Pan J, Li Z, Wang Q, Garrell AK, Liu M, Guan Y, Zhou W, Liu W (2018) Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol 18(1):315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit AA, Shah RA, Husaini AM (2018) Transcriptomics: a time-efficient tool with wide applications in crop and animal biotechnology. J Pharmacogn Phytochem 7(2):1701–1704

    CAS  Google Scholar 

  • Park KO, Ito Y, Nagasawa T, Choi MR, Nishizawa N (2008) Effects of dietary Korean proso-millet protein on plasma adiponectin, HDL cholesterol, insulin levels, and gene expression in obese type 2 diabetic mice. Biosci Biotechnol Biochem 72(11):2918–2925

    Article  CAS  PubMed  Google Scholar 

  • Pathan S, Siddiqui RA (2022) Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: a review. Nutrients 14(3):558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearl millet (2023) Wikimedia Foundation Available at https://en.wikipedia.org/wiki/Pearl_millet#Cultivation

  • Pereira E, Cadavez V, Barros L, Encina-Zelada C, Stojković D, Sokovic M, Calhelha RC, Gonzales-Barron U, Ferreira IC (2020) Chenopodium quinoa Willd. (quinoa) grains: a good source of phenolic compounds. Food Res Int 137:109574

    Article  CAS  PubMed  Google Scholar 

  • Piasecka A, Sawikowska A, Kuczyńska A, Ogrodowicz P, Mikołajczak K, Krystkowiak K, Kachlicki P (2017) Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. Plant J 89(5):898–913

    Article  CAS  PubMed  Google Scholar 

  • Pinosio S, Giacomello S, Faivre-Rampant P, Taylor G, Jorge V, Le Paslier MC, Zaina G, Bastien C, Cattonaro F, Marroni F, Morgante M (2016) Characterization of the poplar pan-genome by genome-wide identification of structural variation. Mol Boil Evol 33(10):2706–2719

    Article  CAS  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate. Trends Plant Sci 11:213–216

    Article  CAS  PubMed  Google Scholar 

  • Punia H, Tokas J, Malik A, Sangwan S (2021) Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Res Commun 49:343–353

    Article  CAS  Google Scholar 

  • Puranik S, Jha S, Srivastava PS, Sreenivasulu N, Prasad M (2011) Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. J Plant Physiol 168(3):280–287

    Article  CAS  PubMed  Google Scholar 

  • Quisenberry KS, Taylor JW (1939) Growing buckwheat. US Government Printing Office

  • Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteom 73:2064–2077

    Article  CAS  Google Scholar 

  • Rahim MS, Mishra A, Katyal M, Thakur S, Sharma M, Kumar P, Roy J (2020b) Marker-trait association identified candidate starch biosynthesis pathway genes for starch and amylose–lipid complex gelatinization in wheat (Triticum aestivum L.). Euphytica 216(9):1–22

    Article  Google Scholar 

  • Rahim MS, Kumar V, Mishra A, Fandade V, Kumar V, Bishnoi M, Roy J (2022) High resistant starch mutant wheat ‘TAC 35’reduced glycemia and ameliorated high fat diet induced metabolic dysregulation in mice. J Cereal Sci 105:103459

    Article  CAS  Google Scholar 

  • Rahim MS, Sharma H, Parveen A, Roy JK (2018) Trait mapping approaches through association analysis in plants. In: Varshney R, Pandey M, Chitikineni A (ed) Plant genetics and molecular biology. Springer Cham (164):83–108

  • Rahim MS, Bhandawat A, Rana N, Sharma H, Parveen A, Kumar P, Roy J (2020a) Genomic selection in cereal crops: methods and applications. In: Wani S H, Gosal S S (ed) Accelerated plant breeding. Springer, Cham, (1):151–188

  • Rana N, Rahim MS, Kaur G, Bansal R, Kumawat S, Roy J, Sharma TR (2020) Applications and challenges for efficient exploration of omics interventions for the enhancement of nutritional quality in rice (Oryza sativa L.). Crit Rev Food Sci Nutr 60(19):3304–3320

    Article  CAS  PubMed  Google Scholar 

  • Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F (2019) Metabolomics: a way forward for crop improvement. Metabolites 9:303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat Genet 44:217–220

    Article  CAS  PubMed  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26(2):243–256

    Article  PubMed  Google Scholar 

  • Roy SK, Kwon SJ, Yu JH, Sarker K, Cho SW, Moon YJ, Jung TW, Park CH, Woo SH (2017) Comparison of protein profiles of proso millet (Panicum miliaceum) seeds of various Korean cultivars. Korean J Crop Sci 62(1):40–50

    Article  Google Scholar 

  • Saleh ASM, Zhang Q, Chen J, Shen Q (2013) Millet grains: Nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295

    Article  CAS  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Schmitz RJ, He Y, Valdés-López O, Khan SM, Joshi T, Urich MA (2013) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res 23:1663–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semagn K, Bjørnstad A, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5(25):2540–2568

    CAS  Google Scholar 

  • Shahidi F, Chandrasekara A (2013) Millet grain phenolics and their role in disease risk reduction and health promotion: a review. J Funct Foods 5(2):570–581

    Article  CAS  Google Scholar 

  • Sharma M, Rahim MS, Kumar P (2020) Large-scale identification and characterization of phenolic compounds and their marker–trait association in wheat. Euphytica 216:127

    Article  CAS  Google Scholar 

  • Shen R, Ma Y, Jiang L, Dong J, Zhu Y, Ren G (2018) Chemical composition, antioxidant, and antiproliferative activities of nine Chinese proso millet varieties. Food Agric Immun 29(1):625–637

  • Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Guo J (2018) Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet (Setaria italica L.). Peer J 6:e4752

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinde H, Tanaka K, Dudhate A, Tsugama D, Mine Y, Kamiya T, Takano T (2018) Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ Exp Bot 155:619–627

    Article  CAS  Google Scholar 

  • Shivhare R, Asif MH, Lata C (2020) Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. Plant mol biol 103:639–652

  • Singh UM, Sareen P, Sengar RS, Kumar A (2013) Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiol Plant 35:2641–2653

    Article  CAS  Google Scholar 

  • Singh RK, Sreenivasulu N, Prasad M (2022) Potential of underutilized crops to introduce the nutritional diversity and achieve zero hunger. Funct Integr Genomics 22(6):1459–1465

  • Singh UM, Chandra M, Shankhdhar SC, Kumar A (2014) Transcriptome wide identification and validation of calcium sensor gene family in the developing spikes of finger millet genotypes for elucidating its role in grain calcium accumulation. PLoS ONE 9(8):e103963

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh M, Metwal M, Kumar VA, Kumar A (2016) Identification and molecular characterization of 48 kDa calcium binding protein as calreticulin from finger millet (Eleusine coracana) using peptide mass fingerprinting and transcript profiling. J Sci Food Agric 96(2):672–679

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Miranda M, Prakash HS, Wobus U, Weschke W (2004) Transcriptome changes in foxtail millet genotypes at high salinity: Identification and characterization of a PHGPX gene specifically up-regulated by NaCl in a salt-tolerant line. J Plant Physiol 161(4):467–477

    Article  CAS  PubMed  Google Scholar 

  • Sui N, Yang Z, Liu M, Wang B (2015) Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genom 16(1):1–18

    Article  CAS  Google Scholar 

  • Suresh BV, Choudhary P, Aggarwal PR, Rana S, Singh RK, Ravikesavan R, Prasad M, Muthamilarasan M (2022) De novo transcriptome analysis identifies key genes involved in dehydration stress response in kodo millet (Paspalum scrobiculatum L.). Genomics 114(3):110347

    Article  CAS  PubMed  Google Scholar 

  • Takac T, Krenek P, Komis G, Vadovic P, Ovecka M, Ohnoutkova L, Pechan T, Kasparek P, Ticha T, Basheer J, Arick M (2021) TALEN-based HvMPK3 knock-Out attenuates proteome and root hair phenotypic responses to flg22 in barley. Front Plant Sci 12:666229

  • Tamhane VA, Sant SS, Jadhav AR, War AR, Sharma HC, Jaleel A, Kashikar AS (2021) Label-free quantitative proteomics of Sorghum bicolor reveals the proteins strengthening plant defense against insect pest Chilo partellus. Proteome Sci 19(1):1–25

    Article  Google Scholar 

  • Taylor SL, Nordlee JA, Jayasena S, Baumert JL (2018) Evaluation of a handheld gluten detection device. J Food Protect 81(10):1723–1728

    Article  CAS  Google Scholar 

  • Teferra TF, Awika JM (2019) Sorghum as a healthy global food security crop: opportunities and challenges. Cereal Foods World 64(5)

  • Tian G, Tang F, Yang C, Zhang W, Bergquist J, Wang B, Mi Z, Zhang J (2017) Quantitative dot blot analysis (QDB), a versatile high throughput immunoblot method. Oncotarget 8:58553–58562

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Kumar R (2016) Plant quality improvement and nutrigenomics. Curr Genom 17(3):153

    Article  CAS  Google Scholar 

  • Tsuru T, Kobayashi I (2008) Multiple genome comparison within a bacterial species reveals a unit of evolution spanning two adjacent genes in a tandem paralog cluster. Mol Biol Evol 25(11):2457–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulchinsky TH (2010) Micronutrient deficiency conditions: global health issues. Public Health Rev 32(1):243–255

    Article  Google Scholar 

  • Varoquaux N, Cole B, Gao C, Pierroz G, Baker CR, Patel D, Purdom E (2019) Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc Natl Acad Sci 116(52):27124–27132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZM, Devos KM, Liu CJ, Wang RQ, Gale MD (1998) Construction of RFLP-based maps of foxtail millet (Setaria italica L.) P. Beauv. Theor Appl Genet 96:31–36

    Article  CAS  Google Scholar 

  • Wang T, Song H, Li P, Wei Y, Hu N, Chen Z, Peng R (2020) Transcriptome analysis provides insights into grain filling in Foxtail Millet (Setaria italica L.). Int J Mol Sci 21(14):5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wang S, Wang J, Peng W (2022) Label-free quantitative proteomics reveals the mechanism of microwave-induced Tartary buckwheat germination and flavonoids enrichment. Food Res Int 160:111758

    Article  CAS  PubMed  Google Scholar 

  • Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I (1995) Progress with gene-product mapping of the mollicutes:mycoplasma genitalium. Electrophoresis 16(7):1090–1094

  • Weckwerth W (2011) Green systems biology—from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteom 75(1):284–305

    Article  CAS  Google Scholar 

  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7(3):340–350

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and arnino acid analysis. Biotechnology 14(1):61–65

    CAS  PubMed  Google Scholar 

  • World Bank (2007) World Development Report. 2008 agriculture for development. The World Bank, Washington, DC

    Book  Google Scholar 

  • Wu G, Johnson SK, Bornman JF, Bennett SJ, Clarke MW, Singh V, Fang Z (2016) Growth temperature and genotype both play important roles in sorghum grain phenolic composition. Sci Rep 6(1):21835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Liu J, Zhou G (2022) Whole-transcriptome analyses of Sorghum leaves identify key mRNAs and ncRNAs associated with GA3-mediated alleviation of salt stress. Front Plant Sci 13:1–14

  • Xi XJ, Zhu YG, Tong YP, Yang XL, Tang NN, Ma SM, Li S, Cheng Z (2016) Assessment of the genetic diversity of different Job’s tears (Coix lacryma-jobi L.) accessions and the active composition and anticancer effect of its seed oil. PLoS ONE 11(4):e0153269

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav CB, Pandey G, Muthamilarasan M, Prasad M (2018) Epigenetics and epigenomics of plants. In: Varshney R, Pandey M, Chitikineni A (eds) Advances in biochemical engineering/biotechnology. Springer, Cham, pp 237–261

    Google Scholar 

  • Yang L, Allred KF, Geera B, Allred CD, Awika JM (2012) Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutr Cancer 64(3):419–427

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Allred KF, Dykes L, Allred CD, Awika JM (2015) Enhanced action of apigenin and naringenin combination on estrogen receptor activation in non-malignant colonocytes: implications on sorghum-derived phytoestrogens. Food Funct 6(3):749–755

    Article  CAS  PubMed  Google Scholar 

  • Yousaf L, Hou D, Liaqat H, Shen Q (2021) Millet: A review of its nutritional and functional changes during processing. Food Res Int 142:10197

  • Zhang JP, Liu TS, Fu JJ, Zhu Y, Jia JP, Zheng J (2007) Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics 90:121–131

    Article  CAS  PubMed  Google Scholar 

  • Zhang DF, Zeng TR, Liu XY, Gao CX, Li YX, Li CH, Yu LI (2019) Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage. J Integr Agric 18(9):1980–1995

    Article  CAS  Google Scholar 

  • Zhu F (2020) Fonio grains: physicochemical properties, nutritional potential, and food applications. Compr Rev Food Sci Food Saf 19(6):3365–3389

    Article  PubMed  Google Scholar 

  • Zhu CS, Gore M, Buckler ES, Yu JM (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

  • Zou L, Wu D, Ren G, Hu Y, Peng L, Zhao J, Garcia-Perez P, Carpena M, Prieto MA, Cao H, Cheng KW (2021) Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Crit Rev Food Sci Nutr 6:1–7

    Google Scholar 

Download references

Acknowledgements

MSR acknowledged the National Agri-Food Biotechnology Institute (NABI), an autonomous institute of the Department of Biotechnology, Government of India (GOI) for fellowship and providing necessary facilities to carry out the research work. MRS also acknowledged the Central University of Punjab (CUP), Bathinda for its collaborative research environment. We also acknowledge DeLCON (DBT-electronic library consortium), Gurugram, India to provide full text access of the research journal.

Author information

Authors and Affiliations

Authors

Contributions

MSR conceived the idea and designed the review, writing original draft; VS, PY, AP, AK, writing original draft and editing; JKR and VK Conceptualization and Supervision, writing–review and editing.

Corresponding authors

Correspondence to Joy Roy or Vinay Kumar.

Ethics declarations

Conflict of interest

The authors have no competing and financial interests to declare that are relevant to the content of this article. All authors read and approved the manuscript.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahim, M.S., Sharma, V., Pragati Yadav et al. Rethinking underutilized cereal crops: pan-omics integration and green system biology. Planta 258, 91 (2023). https://doi.org/10.1007/s00425-023-04242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-023-04242-9

Keywords

Navigation