Skip to main content
Log in

Gossypol and related compounds are produced and accumulate in the aboveground parts of the cotton plant, independent of roots as the source

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Use of Ultra-low gossypol cottonseed event as a scion in a graft combination confirmed that roots are not a source of terpenoids in the aboveground parts of a cotton plant.

Abstract

Gossypol and related terpenoids, derived from the same basic biosynthetic pathway, are present in the numerous lysigenous glands in the aboveground parts of a cotton plant. Roots, with sparse presence of such glands, do produce significant amount of gossypol and a different set of terpenoids. These compounds serve a defensive function against various pests and pathogens. This investigation was undertaken to examine whether gossypol produced in the roots can replenish the gossypol content of the cottonseed-glands that are largely devoid of this terpenoid in a genetically engineered event. Graft unions between a scion derived from the RNAi-based, Ultra-low gossypol cottonseed (ULGCS) event, TAM66274, and a rootstock derived from wild-type parental genotype, Coker 312 (Coker), were compared with various other grafts that served as controls. The results showed that the seeds developing within the scion of test grafts (ULGCS/Coker) continued to maintain the ultra-low gossypol levels found in the TAM66274 seeds. Molecular analyses confirmed that while the key gene involved in gland development showed normal activity in the developing embryos in the scion, two genes encoding the enzymes involved in gossypol biosynthesis were suppressed. Thus, the gene expression data confirmed the results obtained from biochemical measurements and collectively demonstrated that roots are not a source of gossypol for the aboveground parts of the cotton plant. These findings, combined with the results from previous investigations, support the assertion that gossypol and related terpenoids are produced in a highly localized manner in various organs of the cotton plant and are retained therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this article.

Abbreviations

CGF3:

Cotton gland formation gene 3

dCS:

δ-Cadinene synthase gene

DH1:

Alcohol dehydrogenase gene

dpa:

Days post-anthesis

G:

Gossypol

H:

Heliocide

HGQ:

Hemigossypolone

ULGCS:

Ultra-low gossypol cottonseed

VIGS:

Virus-induced gene silencing

References

  • Abraham KJ, Pierce ML, Essenberg M (1999) The phytoalexins desoxyhemigossypol and hemigossypol are elicited by Xanthomonas in Gossypium cotyledons. Phytochemistry 52:829–836

    Article  CAS  Google Scholar 

  • Bell AA (1967) Formation of gossypol in infected or chemically irritated tissues of Gossypium species. Phytopathology 57:759–764

    CAS  Google Scholar 

  • Bell AA, Stipanovic RD, Mace ME, Kohel RJ (1994) Genetic manipulation of terpenoid phytoalexins in Gossypium: effects of disease resistance. In: Ellis BE et al (eds) Genetic engineering of plant secondary metabolism. Plenum Press, New York, pp 231–249

    Chapter  Google Scholar 

  • Benedict CR, Alchanati I, Harvey PJ, Liu J, Stipanovic RD, Bell AA (1995) The enzymatic formation of δ-cadinene from farnesyl diphosphate in extracts of cotton. Phytochemistry 39:327–331

    Article  Google Scholar 

  • Benedict CR, Lu J-L, Pettigrew DW, Liu J, Stipanovic RD, Williams CR (2001) The cyclization of farnesyl diphosphate and nerolidyl diphosphate by a purified recombinant δ-cadinene synthase. Plant Physiol 125:1754–1765

    Article  CAS  Google Scholar 

  • Benson CG, Wyllie SG, Leach DN, Mares CL, Fitt GP (2001) Improved method for the rapid determination of terpenoid aldehydes in cotton. J Agric Food Chem 49:2181–2184

    Article  CAS  Google Scholar 

  • Bezemer TM, Wagenaar R, van Dam NM, van Der Putten WH, Wäckers FL (2004) Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury. J Chem Ecol 30:53–67

    Article  CAS  Google Scholar 

  • Binenbaum J, Weinstain R, Shani E (2018) Gibberellin localization and transport in plants. Trends Plant Sci 23:410–421

    Article  CAS  Google Scholar 

  • Buer CS, Muday GK, Djordjevic MA (2008) Implications of long-distance flavonoid movement in Arabidopsis thaliana. Plant Signal Behav 3:415–417

    Article  Google Scholar 

  • Cai Y, Xie Y, Liu J (2010) Glandless seed and glanded plant research in cotton A Review. Agron Sustain Dev 30:181–190

    Article  CAS  Google Scholar 

  • Chappell J (1995) Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annu Rev Plant Physiol Plant Mol Biol 46:521–547

    Article  CAS  Google Scholar 

  • Chen XY, Chen Y, Heinstein P, Davisson VJ (1995) Cloning, expression, and characterization of (+)-δ-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys 324:255–266

    Article  CAS  Google Scholar 

  • Davis EM, Tsuji J, Davis GD, Pierce ML, Essenberg M (1996) Purification of (+)-δ-cadinene synthase, a sesquiterpene cyclase from bacteria-inoculated cotton foliar tissue. Phytochemistry 41:1047–1055

    Article  CAS  Google Scholar 

  • Dawson RF (1942) Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am J Bot 29:66–71

    Article  CAS  Google Scholar 

  • Dong D, Shi YN, Mou ZM, Chen SY, Zhao DK (2022) Grafting: a potential method to reveal the differential accumulation mechanism of secondary metabolites. Hort Res. https://doi.org/10.1093/hr/uhac050

    Article  Google Scholar 

  • Eisenring M, Meissle M, Hagenbucher S, Naranjo SE, Wettstein F, Romeis J (2017) Cotton defense induction patterns under spatially, temporally and quantitatively varying herbivory levels. Front Plant Sci 8:234

    Article  Google Scholar 

  • Gao W, Long L, Zhu L-F, Xu L, Gao W-H, Sun L-Q, Liu L-L, Zhang X-L (2013) Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteom 12:3690–3703

    Article  CAS  Google Scholar 

  • Gao W, Xu FC, Long L, Li Y, Zhang JL, Chong L, Botella JR, Song CP (2020) The gland localized CGP1 controls gland pigmentation and gossypol accumulation in cotton. Plant Biotechnol J 18:1573–1584

    Article  CAS  Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospíšilová H, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Lutts S, Dodd IC (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140

    Article  CAS  Google Scholar 

  • Habibi F, Liu T, Folta K, Sarkhosh A (2022) Physiological, biochemical, and molecular aspects of grafting in fruit trees. Hort Res. https://doi.org/10.1093/hr/uhac032

    Article  Google Scholar 

  • Halloin JM, Bell AA (1979) Production of nongladular terpenoid aldehydes within diseased seeds and cotyledons of Gossypium hirsutum L. J Agric Food Chem 27:1407–1409

    Article  CAS  Google Scholar 

  • Heinstein PF, Smith FH, Tove SB (1962) Biosynthesis of C14-labeled gossypol. J Biol Chem 237:2643–2646

    Article  CAS  Google Scholar 

  • Heinstein PF, Herman DL, Tove SB, Smith FH (1970) Biosynthesis of gossypol: incorporation of mevalonate-2-14C and isoprenyl pyrophosphates. J Biol Chem 245:4658–4665

    Article  CAS  Google Scholar 

  • Hooijdonk V, Woolley D, Warrington I, Tustin D (2010) Initial alteration of scion architecture by dwarfing apple rootstocks may involve shoot-root-shoot signalling by auxin, gibberellin, and cytokinin. J Hortic Sci Biotechnol 85:59–65

    Article  Google Scholar 

  • Huang JQ, Fang X, Tian X, Chen P, Lin JL, Guo XX, Li JX, Fan Z, Song WM, Chen FY, Ahati R, Wang LJ, Zhao Q, Martin C, Chen XY (2020) Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol 16:250–256

    Article  CAS  Google Scholar 

  • Janga MR, Pandeya D, Campbell LM, Konganti K, Villafuerte ST, Puckhaber L, Pepper A, Stipanovic RD, Scheffler JA, Rathore KS (2019) Genes regulating gland development in the cotton plant. Plant Biotechnol J 17:1142–1153

    Article  CAS  Google Scholar 

  • Kakizaki T, Kitashiba H, Zou Z, Li F, Fukino N, Ohara T, Nishio T, Ishida M (2017) A 2-oxoglutarate-dependent dioxygenase mediates the biosynthesis of glucoraphasatin in radish. Plant Physiol 173:1583–1593

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Ma D, Hu Y, Yang C et al (2016) Genetic basis for glandular trichome formation in cotton. Nat Commun 7:10456

    Article  CAS  Google Scholar 

  • Martin GS, Liu J, Benedict CR, Stipanovic RD, Magill CW (2003) Reduced levels of cadinane sesquiterpenoids in cotton plants expressing antisense (+)-δ-Cadinene synthase. Phytochemistry 62:31–38

    Article  CAS  Google Scholar 

  • McAuslane HJ, Alborn HT (1998) Systemic induction of allelochemicals in glanded and glandless isogenic cotton by Spodoptera exigua feeding. J Chem Ecol 24:399–416

    Article  CAS  Google Scholar 

  • McAuslane HJ, Alborn HT, Toth JP (1997) Systemic induction of terpenoid aldehydes in cotton pigment glands by feeding of larval Spodoptera exigua. J Chem Ecol 23:2861–2879

    Article  CAS  Google Scholar 

  • McMichael S (1954) Glandless boll in upland cotton and its use in the study of natural crossing. Agron J 46:527–523

    Article  Google Scholar 

  • Mellon J, Dowd M, Beltz S, Moore G (2014) Growth inhibitory effects of gossypol and related compounds on fungal cotton root pathogens. Lett Appl Microbiol 59:161–168

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Opitz S, Kunert G, Gershenzon J (2008) Increased terpenoid accumulation in cotton (Gossypium hirsutum) foliage is a general wound response. J Chem Ecol 34:508–522

    Article  CAS  Google Scholar 

  • Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H (2017) Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat Plants 3:17112

    Article  CAS  Google Scholar 

  • Palle SR, Campbell LM, Pandeya D, Puckhaber L, Tollack LK, Marcel S, Sundaram S, Stipanovic RD, Wedegaertner TC, Hinze L (2013) RNAi-mediated Ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J 11:296–304

    Article  CAS  Google Scholar 

  • Rathore KS, Sundaram S, Sunilkumar G, Campbell LM, Puckhaber L, Marcel S, Palle SR, Stipanovic RD, Wedegaertner TC (2012) Ultra-low gossypol cottonseed: generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination. Plant Biotechnol J 10:174–183

    Article  CAS  Google Scholar 

  • Rathore KS, Pandeya D, Campbell LM, Wedegaertner TC, Puckhaber L, Stipanovic RD, Thenell JS, Hague S, Hake K (2020) Ultra-low gossypol cottonseed: selective gene silencing opens up a vast resource of plant-based protein to improve human nutrition. Crit Rev Plant Sci 39:1–29

    Article  CAS  Google Scholar 

  • Robe K, Conejero G, Gao F, Lefebvre-Legendre L, Sylvestre-Gonon E, Rofidal V, Hem S, Rouhier N, Barberon M, Hecker A (2021) Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process. New Phytol 229:2062–2079

    Article  CAS  Google Scholar 

  • Ruiz JM, Blasco B, Rivero RM, Romero L (2005) Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiol Plant 124:465–475

    Article  CAS  Google Scholar 

  • Scheffler JA (2016) Evaluating protective terpenoid aldehyde compounds in cotton (Gossypium hirsutum L) roots. Am J Plant Sci 7:1086

    Article  CAS  Google Scholar 

  • Scheffler J, Taliercio E, Tonos J, Romano G (2014) Microscopic methods to evaluate gland initiation and development in cotton ovules. J Cotton Sci 18:420–429

    Google Scholar 

  • Smith F (1961) Biosynthesis of gossypol by excised cotton roots. Nature 192:888–889

    Article  CAS  Google Scholar 

  • Stipanovic RD, Bell AA, O’Brien DH, Lukefahr MJ (1978a) Heliocide H1. A new insecticidal c25 terpenoid from cotton (Gossypium hirsutum). J Agric Food Chem 26:115–118

    Article  CAS  Google Scholar 

  • Stipanovic RD, Bell AA, O’Brien DH, Lukefahr MJ (1978b) Heliocide H3 an insecticidal terpenoid from Gossypium hirsutum. Phytochemistry 17:151–152

    Article  CAS  Google Scholar 

  • Stipanovic RD, Stoessl A, Stothers JB, Altman DW, Bell AA, Heinstein P (1986) The stereochemistry of the biosynthetic precursor of gossypol. J Chem Soc Chem Commun 2:100–102

    Article  Google Scholar 

  • Stipanovic RD, Altman DW, Begin DL, Greenblatt GA, Benedict JH (1988) Terpenoid aldehydes in upland cottons: analysis by aniline and HPLC methods. J Agric Food Chem 36:509–515

    Article  CAS  Google Scholar 

  • Stipanovic R, Bell A, Benedict C (1999) Cotton pest resistance: the role of pigment gland constituents. In: Cutler HG, Cutler S (eds) Biologically active natural products: Agrochemicals. CRC Press, Florida, pp 211–220

    Google Scholar 

  • Stipanovict RD, Bell AA, O’Brien DH, Lukefahr MJ (1977) Heliocide H2: an insecticidal sesterterpenoid from cotton (Gossypium). Tetrahedron Lett 18:567–570

    Article  Google Scholar 

  • Sunilkumar G, Connell JP, Smith C, Reddy AS, Rathore KS (2002) Cotton α-globulin promoter: isolation and functional characterization in transgenic cotton, Arabidopsis, and tobacco. Transgenic Res 11:347–359

    Article  CAS  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103:18054–18059

    Article  CAS  Google Scholar 

  • Tian X, Ruan J-X, Huang JQ, Yang C-Q, Fang X, Chen Z-W, Hong H, Wang L-J, Mao Y-B, Lu S (2018) Characterization of gossypol biosynthetic pathway. Proc Natl Acad Sci USA 115:E5410–E5418

    Article  CAS  Google Scholar 

  • Veech J (1979) Histochemical localization and nematoxicity of terpenoid aldehydes in cotton. J Nematol 11:240–246

    CAS  Google Scholar 

  • Veech J, McClure M (1977) Terpenoid aldehydes in cotton roots susceptible and resistant to the root-knot nematode, Meloidogyne incognita. J Nematol 9:225–229

    CAS  Google Scholar 

  • Wagner TA, Liu J, Stipanovic RD, Puckhaber LS, Bell AA (2012) Hemigossypol, a constituent in developing glanded cottonseed (Gossypium hirsutum). J Agric Food Chem 60:2594–2598

    Article  CAS  Google Scholar 

  • Wagner TA, Cai Y, Bell AA, Puckhaber LS, Magill C, Duke SE, Liu J (2020) RNAi suppression of CYP82D P450 hydroxylase, an enzyme involved in gossypol biosynthesis, enhances resistance to Fusarium wilt in cotton. J Phytopathol 168:103–112

    Article  CAS  Google Scholar 

  • Wang YH, Davila-Huerta G, Essenberg M (2003) 8-Hydroxy-(+)-δ-cadinene is a precursor to hemigossypol in Gossypium hirsutum. Phytochemistry 64:219–225

    Article  CAS  Google Scholar 

  • Yasinok AE, Sahin FI, Eyidogan F, Kuru M, Haberal M (2009) Grafting tomato plant on tobacco plant and its effect on tomato plant yield and nicotine content. J Sci Food Agric 89:1122–1128

    Article  CAS  Google Scholar 

  • Zhang J, Mace M, Stipanovic R, Bell A (1993) Production and fungitoxicity of the terpenoid phytoalexins in cotton inoculated with Fusarium oxysporum f. sp. vasinfectum. J Phytopathol 139:247–252

    Article  CAS  Google Scholar 

  • Zhang J, Zhao T, Sheng K, Sun Y, Han Y, Chen Y, E Z, Zhu S, Chen J, (2022) Root illumination promotes seedling growth and inhibits gossypol biosynthesis in upland cotton. Plants 11:728

    Article  CAS  Google Scholar 

  • Zhao T, Li C, Li C, Zhang F, Mei L, Chindudzi E, Chen J, Zhu S (2019) Genome-wide analysis of genetic variations between dominant and recessive NILs of glanded and glandless cottons. Sci Rep 9:9226

    Article  Google Scholar 

  • Zhao T, Xie Q, Li C, Li C, Mei L, Yu JZ, Chen J, Zhu S (2020) Cotton roots are the major source of gossypol biosynthesis and accumulation. BMC Plant Biol 20:88

    Article  CAS  Google Scholar 

  • Zhao T, Hu J, Li C, Li C, Mei L, Chen J, Zhu S (2017) Gossypol biosynthesis in cotton revealed through organ culture, plant grafting and gene expression profiling. BioRxiv: 173138

Download references

Acknowledgements

We thank Dr. Robert Stipanovic and Dr. C. Wayne Smith for critical reading of the manuscript.

Funding

This project was supported by funds from Cotton Inc. [#06–863, #09–567, #13–739] and Texas A&M AgriLife Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keerti S. Rathore.

Ethics declarations

Conflict of interest

None declared.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandeya, D., Campbell, L.M., Puckhaber, L. et al. Gossypol and related compounds are produced and accumulate in the aboveground parts of the cotton plant, independent of roots as the source. Planta 257, 21 (2023). https://doi.org/10.1007/s00425-022-04049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-04049-0

Keywords

Navigation