Skip to main content

Advertisement

Log in

Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Genomic selection and its importance in crop breeding. Integration of GS with new breeding tools and developing SOP for GS to achieve maximum genetic gain with low cost and time.

Abstract

The success of conventional breeding approaches is not sufficient to meet the demand of a growing population for nutritious food and other plant-based products. Whereas, marker assisted selection (MAS) is not efficient in capturing all the favorable alleles responsible for economic traits in the process of crop improvement. Genomic selection (GS) developed in livestock breeding and then adapted to plant breeding promised to overcome the drawbacks of MAS and significantly improve complicated traits controlled by gene/QTL with small effects. Large-scale deployment of GS in important crops, as well as simulation studies in a variety of contexts, addressed G × E interaction effects and non-additive effects, as well as lowering breeding costs and time. The current study provides a complete overview of genomic selection, its process, and importance in modern plant breeding, along with insights into its application. GS has been implemented in the improvement of complex traits including tolerance to biotic and abiotic stresses. Furthermore, this review hypothesises that using GS in conjunction with other crop improvement platforms accelerates the breeding process to increase genetic gain. The objective of this review is to highlight the development of an appropriate GS model, the global open source network for GS, and trans-disciplinary approaches for effective accelerated crop improvement. The current study focused on the application of data science, including machine learning and deep learning tools, to enhance the accuracy of prediction models. Present study emphasizes on developing plant breeding strategies centered on GS combined with routine conventional breeding principles by developing GS-SOP to achieve enhanced genetic gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated or analyzed during the current study are presented in the article.

References

  • Akdemir D, Isidro-Sánchez J (2019) Design of training populations for selective phenotyping in genomic prediction. Sci Rep 9:1–5

    Article  CAS  Google Scholar 

  • Anand A, Bass SH, Wu E, Wang N, McBride KE, Annaluru N, Miller M, Hua M, Jones TJ (2018) An improved ternary vector system for Agrobacterium-mediated rapid maize transformation. Plant Mol Biol 97:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anilkumar C, Sah RP, Muhammed AT, Sunitha NC, Behera S, Marndi BC, Sharma TR, Singh AK (2022a) Genomic selection in rice: current status and future prospects. In: Elias AA, Goel S (Eds.). Genomic selection in plants a guide for breeders (1st Ed.). CRC Press. pp. 68–82. https://doi.org/10.1201/9781003214991

  • Anilkumar C, Sah RP, Muhammed Azharudheen TP, Behera S, Singh N, Prakash NR, Sunitha NC, Devanna BN, Marndi BC, Patra BC, Nair SK (2022b) Understanding complex genetic architecture of rice grain weight through QTL-meta analysis and candidate gene identification. Sci Rep 12:1–13. https://doi.org/10.1038/s41598-022-17402-w

    Article  CAS  Google Scholar 

  • Annicchiarico P, Nazzicari N, Li X, Wei Y, Pecetti L, Brummer EC (2015) Accuracy of genomic selection for alfalfa biomass yield in different reference populations. BMC Genom 16:1–3

    Article  Google Scholar 

  • Araus JL, Kefauver SC, Zaman-Allah M, Olsen MS, Cairns JE (2018) Translating high-throughput phenotyping into genetic gain. Trends Plant Sci 23:451–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arruda MP, Brown PJ, Lipka AE, Krill AM, Thurber C, Kolb FL (2015) Genomic selection for predicting Fusarium head blight resistance in a wheat breeding program. Plant Genome 8:1–12

    Article  CAS  Google Scholar 

  • Arruda MP, Lipka AE, Brown PJ, Krill AM, Thurber C, Brown-Guedira G, Dong Y, Foresman BJ, Kolb FL (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breed 36:1–11

    Article  CAS  Google Scholar 

  • Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132

    Article  Google Scholar 

  • Azizinia S, Bariana H, Kolmer J, Pasam R, Bhavani S, Chhetri M, Toor A, Miah H, Hayden MJ, Pino del Carpio D, Bansal U (2020) Genomic prediction of rust resistance in tetraploid wheat under field and controlled environment conditions. Agron 10:1843

    Article  CAS  Google Scholar 

  • Baba T, Momen M, Campbell MT, Walia H, Morota G (2020) Multi-trait random regression models increase genomic prediction accuracy for a temporal physiological trait derived from high-throughput phenotyping. PLoS ONE 15(2):e0228118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartholome J, Van Heerwaarden J, Isik F, Boury C, Vidal M, Plomion C, Bouffier L (2016) Performance of genomic prediction within and across generations in maritime pine. BMC Genom 17:604

    Article  Google Scholar 

  • Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36

    Article  CAS  PubMed  Google Scholar 

  • Battenfield SD, Guzmán C, Gaynor RC, Singh RP, Peña RJ, Dreisigacker S, Fritz AK, Poland JA (2016) Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program. Plant Genome 9:1–12

    Article  CAS  Google Scholar 

  • Ben Hassen M, Cao TV, Laval J, Colombi C, Orasen G, Rakotomalala J, Razafinimpiasa L, Bertone C, Biselli C, Cattivelli L, Ahmadi N (2017) Genomic selection for water use efficiency in Japonica rice and evaluation of different parameters implicated on the accuracy level. In: Proceedings Plant and Animal Genome XXV Conference. San Diego: PAG, 1 p. Plant and Animal Genome Conference. 25, San Diego, États-Unis

  • Ben Hassen M, Bartholomé J, Valè G, Cao TV, Ahmadi N (2018) Genomic prediction accounting for genotype by environment interaction offers an effective framework for breeding simultaneously for adaptation to an abiotic stress and performance under normal cropping conditions in rice. G3 2319–2332

  • Bennewitz J, Solberg T, Meuwissen T (2009) Genomic breeding value estimation using nonparametric additive regression models. Genet Sel Evol 41:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernardo R, Yu J (2007) Prospects for genome-wide selection for quantitative traits in maize. Crop Sci 47:1082

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bernardo R (2014) Genome wide selection when major genes are known. Crop Sci 54:68–75

    Article  Google Scholar 

  • Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet 129:2323–2332

    Article  PubMed  Google Scholar 

  • Bernardo R (2017) Prospective targeted recombination and genetic gains for quantitative traits in maize. Plant Genome 10:1–9

    Article  CAS  Google Scholar 

  • Bernardo R (2020) Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something BLUE. Heredity 125:375–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Beyene Y, Gowda M, Pérez-Rodríguez P, Olsen M, Robbins KR, Burgueño J, Prasanna BM, Crossa J (2021) Application of genomic selection at the early stage of breeding pipeline in tropical maize. Front Plant Sci 12:685488

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhandari A, Bartholomé J, Cao-Hamadoun TV, Kumari N, Frouin J, Kumar A, Ahmadi N (2019) Selection of trait-specific markers and multi-environment models improve genomic predictive ability in rice. PLoS ONE 14:e0208871

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Bian YA, Holland J (2018) Enhancing genomic prediction with genome-wide association studies in multiparental maize populations. Heredity 118(6):585–593

    Article  Google Scholar 

  • Brandariz SP, Bernardo R (2019) Small ad hoc versus large general training populations for genome-wide selection in maize biparental crosses. Theor Appl Genet 132:347–353

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES (2017) Direction of GWAS and GS. Paper presented at the plant and animal genome XXV, San Diego, CA, USA

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

  • Campbell M, Walia H, Morota G (2018) Utilizing random regression models for genomic prediction of a longitudinal trait derived from high-throughput phenotyping. Plant Direct 2(9):e00080

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerrudo D, Cao S, Yuan Y, Martinez C, Suarez EA, Babu R, Zhang X, Trachsel S (2018) Genomic selection outperforms marker assisted selection for grain yield and physiological traits in a maize doubled haploid population across water treatments. Front Plant Sci 9:366

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborti M, Anilkumar C, Verma RL, Fiyaz AR, Reshmi Raj KR, Patra BC, Balakrishnan D, Sarkar S, Mondal NP, Kar MK, Meher J, Sundaram RM, Subba Rao LV (2021) Rice breeding in India: eight decades of journey towards enhancing the genetic gain for yield, nutritional quality, and commodity value. ORYZA-An International Journal of Rice 58 (Special Issue): 69–88

  • Chen L, Li C, Sargolzaei M, Schenkel F (2014) Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction. PLoS ONE 9:e101544

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Garrick DJ, Fernando RL (2017) Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction. J Anim Sci Biotechnol 8:1–5

    Article  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  CAS  PubMed  Google Scholar 

  • Combs E, Bernardo R (2013) Accuracy of genome wide selection for different traits with constant population size, heritability, and number of markers. Plant Genome 6:11

    Article  Google Scholar 

  • Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A, Hausmann NJ, Wright D, Graham G (2014) Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:311

    Article  CAS  Google Scholar 

  • Cowling WA, Li L, Siddique KH, Henryon M, Berg P, Banks RG, Kinghorn BP (2017) Evolving gene banks: improving diverse populations of crop and exotic germplasm with optimal contribution selection. J Exp Bot 68:1927–1939

    CAS  PubMed  Google Scholar 

  • Crain J, Mondal S, Rutkoski J, Singh RP, Poland J (2018) Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. Plant Genome 11:170043

    Article  Google Scholar 

  • Crossa J, Perez P, Hickey J, Burgueno J, Ornella L, Cerón-Rojas J, Zhang X, Dreisigacker S, Babu R, Li Y, Bonnett D (2014) Genomic prediction in CIMMYT maize and wheat breeding programs. Heredity 112:48–60

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, De Los CG, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Li R, Li G, Zhang F, Zhu T, Zhang Q, Ali J, Li Z, Xu S (2020) Hybrid breeding of rice via genomic selection. Plant Biotechnol J 18:57–67

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira EJ, de Resende MD, da Silva SV, Ferreira CF, Oliveira GA, da Silva MS, de Oliveira LA, Aguilar-Vildoso CI (2012) Genome-wide selection in cassava. Euphytica 187:263–276

    Article  CAS  Google Scholar 

  • Dekkers JC (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. J Anim Breed Genet 124:331–341

    Article  CAS  PubMed  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Xu X, Li L, Liu C, Tian X, Li W, Chen S (2014) Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Mol Breed 34(1147):1158

    Google Scholar 

  • Dong L, Li L, Liu C, Liu C, Geng S, Li X, Huang C, Mao L, Chen S, Xie C (2018) Genome editing and double-fluorescence proteins enable robust maternal haploid induction and identification in maize. Mol Plant 11:1214–1217

    Article  CAS  PubMed  Google Scholar 

  • Đorđević V, Ćeran M, Miladinović J, Balešević-Tubić S, Petrović K, Miladinov Z, Marinković J (2019) Exploring the performance of genomic prediction models for soybean yield using different validation approaches. Mol Breed 39:74

    Article  Google Scholar 

  • Dreisigacker S, Crossa J, Pérez-Rodríguez P, Montesinos-López OA, Rosyara U, Juliana P, Mondal S, Crespo-Herrera L, Govindan V, Singh RP, Braun HJ (2021) Implementation of Genomic Selection in the CIMMYT Global Wheat Program, Findings from the Past 10 Years. Crop Breed Genet Genom 3:e210005

    Google Scholar 

  • Esuma W, Ozimati A, Kulakow P, Gore MA, Wolfe MD, Nuwamanya E, Egesi C, Kawuki RS (2021) Effectiveness of genomic selection for improving provitamin A carotenoid content and associated traits in cassava. G3 11:jkab160

  • Fernandes SB, Dias KOG, Ferreira DF, Brown PJ (2018) Efficiency of multi-trait, indirect, and trait-assisted genomic selection for improvement of biomass sorghum. Theor Appl Genet 131:747–755

    Article  CAS  PubMed  Google Scholar 

  • Frouin J, Labeyrie A, Boisnard A, Sacchi GA, Ahmadi N (2019) Genomic prediction offers the most effective marker assisted breeding approach for ability to prevent arsenic accumulation in rice grains. PLoS ONE 14:e0217516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffney J, Schussler J, Löffler C, Cai W, Paszkiewicz S, Messina C, Groeteke J, Keaschall J, Cooper M (2015) Industry-scale evaluation of maize hybrids selected for increased yield in drought stress conditions of the US corn belt. Crop Sci 55:1608

    Article  Google Scholar 

  • Gapare W, Liu S, Conaty W, Zhu QH, Gillespie V, Llewellyn D, Stiller W, Wilson I (2018) Historical datasets support genomic selection models for the prediction of cotton fiber quality phenotypes across multiple environments. G3 8:1721–1732

  • García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, van Tassell CP (2016) Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proc Natl Acad Sci USA 113:E3995–E4004

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaynor RC, Gorjanc G, Bentley AR, Ober ES, Howell P, Jackson R, Mackay IJ, Hickey JM (2017) A two-part strategy for using genomic selection to develop inbred lines. Crop Sci 57:2372

    Article  Google Scholar 

  • Goddard M (2009) Genomic selection: prediction of accuracy and maximization of long term response. Genetica 136:245–257

    Article  PubMed  Google Scholar 

  • Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol 14:1099–1105

    Article  Google Scholar 

  • Gorjanc G, Gaynor RC, Hickey JM (2018) Optimal cross selection for long-term genetic gain in two-part programs with rapid recurrent genomic selection. Theor Appl Genet 131:1953–1966

    Article  PubMed  PubMed Central  Google Scholar 

  • Grattapaglia D, Resende MDV, Resende M, Sansaloni C, Petroli C, Missiaggia A, Takahashi E, Zamprogno K, Kilian A (2011) Genomic selection for growth traits in Eucalyptus: accuracy within and across breeding populations. BMC Proc 5:1–2

    Article  Google Scholar 

  • Grenier C, Cao TV, Ospina Y, Quintero C, Châtel MH, Tohme J, Courtois B, Ahmadi N (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS ONE 10:e0136594

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Tucker DM, Lu J, Kishore V, Gay G (2012) Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor Appl Genet 124:261–275

    Article  PubMed  Google Scholar 

  • Guo G, Zhao F, Wang Y, Zhang Y, Du L, Su G (2014) Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet 15:1–7

    Article  CAS  Google Scholar 

  • Guo T, Yu X, Li X, Zhang H, Zhu C, Flint-Garcia S, McMullen MD, Holland JB, Szalma SJ, Wisser RJ, Yu J (2019) Optimal designs for genomic selection in hybrid crops. Mol Plant 12:390–401

    Article  CAS  PubMed  Google Scholar 

  • Haikka H, Knürr T, Manninen O, Pietilä L, Isolahti M, Teperi E, Mäntysaari EA, Strandén I (2020) Genomic prediction of grain yield in commercial Finnish oat (Avena sativa) and barley (Hordeum vulgare) breeding programmes. Plant Breed 139:550–561

    Article  CAS  Google Scholar 

  • Hamblin MT, Close TJ, Bhat PR, Chao S, Kling JG, Abraham KJ, Blake T, Brooks WS, Cooper B, Griffey CA, Hayes PM (2010) Population structure and linkage disequilibrium in US barley germplasm: implications for association mapping. Crop Sci 50:556–566

    Article  CAS  Google Scholar 

  • Hanafi S, Cherkaoui S, Kehel Z, Al-Abdallat A, Tadesse W (2021) Genome-wide association and prediction of male and female floral hybrid potential traits in elite spring bread wheat genotypes. Plants 10:895

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Wang H, Yang X, Zhang H, He C, Li D, Li H, Wang G, Wang J, Fu J (2019) Genomic prediction using existing historical data contributing to selection in biparental populations: a study of kernel oil in maize. Plant Genome 12:180025

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) Additive models, trees, and related methods. In: The Elements of Statistical Learning 2009 (pp. 295–336). Springer, New York, NY

  • He L, Xiao J, Rashid KY, Jia G, Li P, Yao Z, Wang X, Cloutier S, You FM (2019) Evaluation of genomic prediction for pasmo resistance in flax. Int J Mol Sci 20:359

    Article  PubMed Central  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Heffner EL, Jannink JL, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65

    Article  Google Scholar 

  • Herter CP, Ebmeyer E, Kollers S, Korzun V, Miedaner T (2019) An experimental approach for estimating the genomic selection advantage for Fusarium head blight and Septoriatritici blotch in winter wheat. Theor Appl Genet 132:2425–2437

    Article  PubMed  Google Scholar 

  • Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160

    Article  Google Scholar 

  • Heslot N, Akdemir D, Sorrells ME, Jannink JL (2014) Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theor Appl Genet 127:463–480

    Article  PubMed  Google Scholar 

  • Hickey LT, Germán SE, Pereyra SA, Diaz JE, Ziems LA, Fowler RA, Platz GJ, Franckowiak JD, Dieters MJ (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213:64

    Article  Google Scholar 

  • Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SC, Tester M, Gao C, Godwin ID, Hayes BJ, Wulff BB (2019) Breeding crops to feed 10 billion. Nat Biotechnol 37:744–754

    Article  CAS  PubMed  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  CAS  PubMed  Google Scholar 

  • Hirsch CN, Springer NM (2018) Weeding out Bad Alleles. Nat Plants 4:193–194

    Article  PubMed  Google Scholar 

  • Hoffstetter A, Cabrera A, Huang M, Sneller C (2016) Optimizing training population data and validation of genomic selection for economic traits in soft winter wheat. G3 6:2919–2928

  • Huang M, Balimponya EG, Mgonja EM, McHale LK, Luzi-Kihupi A, Wang GL, Sneller CH (2019) Use of genomic selection in breeding rice (Oryza sativa L.) for resistance to rice blast (Magnaporthe oryzae). Mol Breed 39:1–6

    Article  Google Scholar 

  • Isidro J, Jannink JL, Akdemir D, Poland J, Heslot N, Sorrells ME (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158

    Article  PubMed  Google Scholar 

  • Isik F, Bartholome J, Farjat A, Chancerel E, Raffin A, Sanchez L, Plomion C, Bouffier L (2016) Genomic selection in maritime pine. Plant Sci 242:108–119

    Article  CAS  PubMed  Google Scholar 

  • Jarquin D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Perez P, Calus M, Burgueno J (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607

    Article  PubMed  Google Scholar 

  • Jarquin D, De Leon N, Romay C, Bohn M, Buckler ES, Ciampitti I, Edwards J, Ertl D, Flint-Garcia S, Gore MA, Graham C (2021) Utility of climatic information via combining ability models to improve genomic prediction for yield within the genomes to fields maize project. Front Genet 11:592769

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia Z (2017) Controlling the over-fitting of heritability in genomic selection through cross validation. Sci Rep 7:1–9

    Article  Google Scholar 

  • Jighly A, Lin Z, Pembleton LW, Cogan NO, Spangenberg GC, Hayes BJ, Daetwyler HD (2019) Boosting genetic gain in allogamous crops via speed breeding and genomic selection. FrontPlant Sci 10:1364

    Google Scholar 

  • Jonas E, de Koning DJ (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504

    Article  CAS  PubMed  Google Scholar 

  • Juliana P, Singh RP, Poland J, Mondal S, Crossa J, Montesinos-López OA, Dreisigacker S, Pérez-Rodríguez P, Huerta-Espino J, Crespo-Herrera L, Govindan V (2018) Prospects and challenges of applied genomic selection—a new paradigm in breeding for grain yield in bread wheat. Plant Genome 11:1–17

    Article  Google Scholar 

  • Juliana P, Montesinos-López OA, Crossa J, Mondal S, Pérez LG, Poland J, Huerta-Espino J, Crespo-Herrera L, Govindan V, Dreisigacker S, Shrestha S (2019) Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theor Appl Genet 132:177–194

    Article  CAS  PubMed  Google Scholar 

  • Katara J, Parameswaran C, Devanna BN, Verma RL, Anilkumar C, Patra BC, Samantaray S (2021) Genomics assisted breeding: The need and current perspective for rice improvement in India. Oryza 58:61–68

    Article  Google Scholar 

  • Kearsey MJ, Farquhar AG (1998) QTL analysis in plants; where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  • Krishnappa G, Savadi S, Tyagi BS, Singh SK, Masthigowda MH, Kumar S, Mishra CN, Khan H, Krishnappa G, Govindareddy U, Singh G (2021) Integrated genomic selection for rapid improvement of crops. Genomics 113:1070–1086

    Article  CAS  PubMed  Google Scholar 

  • Lado B, Vázquez D, Quincke M, Silva P, Aguilar I, Gutiérrez L (2018) Resource allocation optimization with multi-trait genomic prediction for bread wheat (Triticum aestivum L.) baking quality. Theor Appl Genet 131:2719–2731

    Article  PubMed  PubMed Central  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genet 124:743–756

    Article  CAS  Google Scholar 

  • Lehermeier C, Krämer N, Bauer E, Bauland C, Camisan C, Campo L, Flament P, Melchinger AE, Menz M, Meyer N, Moreau L (2014) Usefulness of multiparental populations of maize (Zea mays L.) for genome-based prediction. Genet 198:3–16

    Article  Google Scholar 

  • Li X, Wei Y, Acharya A, Hansen JL, Crawford JL, Viands DR, Michaud R, Claessens A, Brummer EC (2015) Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 8:1–10

    Article  Google Scholar 

  • Liang Z, Gupta SK, Yeh CT, Zhang Y, Ngu DW, Kumar R, Patil HT, Mungra KD, Yadav DV, Rathore A, Srivastava RK (2018) Phenotypic data from inbred parents can improve genomic prediction in pearl millet hybrids. G3 8:2513–2522

  • Lin Z, Hayes BJ, Daetwyler HD (2014) Genomic selection in crops, trees and forages. A review. Crop Pasture Sci 65:1177

    Article  Google Scholar 

  • Liu X, Wang H, Wang H, Guo Z, Xu X, Liu J, Wang S, Li WX, Zou C, Prasanna BM, Olsen MS (2018) Factors affecting genomic selection revealed by empirical evidence in maize. Crop J 6:341–352

    Article  Google Scholar 

  • Liu C, Zhong Y, Qi X, Chen M, Liu Z, Chen C, Tian X, Li J, Jiao Y, Wang D, Wang Y (2020) Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol J 18:316

    Article  PubMed  Google Scholar 

  • Longin CFH, Reif JC (2014) Redesigning the exploitation of wheat genetic resources. Trends Plant Sci 19:631–636

    Article  CAS  PubMed  Google Scholar 

  • Lorenz AJ, Smith KP, Jannink JL (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621

    Article  Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    Article  PubMed  Google Scholar 

  • Lozada DN, Godoy JV, Ward BP, Carter AH (2019) Genomic prediction and indirect selection for grain yield in US pacific northwest winter wheat using spectral reflectance indices from high-throughput phenotyping. Int J Mol Sci 21(1):165

    Article  PubMed Central  Google Scholar 

  • Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Gauch HG, Okechukwu R, Dixon AGO, Kulakow P, Jannink JL (2013) Relatedness and genotype × environment interaction affect prediction accuracies in genomic selection. A Study in Cassava. Crop Sci 53:1312

    Article  Google Scholar 

  • Ma Y, Reif JC, Jiang Y, Wen Z, Wang D, Liu Z, Guo Y, Wei S, Wang S, Yang C, Wang H (2016) Potential of marker selection to increase prediction accuracy of genomic selection in soybean (Glycinemax L.). Mol Breed 36:1–10

    Article  Google Scholar 

  • Martini JW, Wimmer V, Erbe M, Simianer H (2016) Epistasis and covariance: how gene interaction translates into genomic relationship. Theor Appl Genet 129:963–976

    Article  CAS  PubMed  Google Scholar 

  • Merrick LF, Burke AB, Chen X, Carter AH (2021) Breeding with major and minor genes: genomic selection for quantitative disease resistance. bioRxiv

  • Messina CD, Technow F, Tang T, Totir R, Gho C, Cooper M (2018) Leveraging biological insight and environmental variation to improve phenotypic prediction: Integrating crop growth models (CGM) with whole genome prediction (WGP). Eur J Agron 100:151–162

    Article  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genet 157:1819–1829

    Article  CAS  Google Scholar 

  • Meuwissen T, Hayes B, Goddard M (2016) Genomic selection: A paradigm shift in animal breeding. Anim Front 6:6–14

    Article  Google Scholar 

  • Michel S, Wagner C, Nosenko T, Steiner B, Samad-Zamini M, Buerstmayr M, Mayer K, Buerstmayr H (2021) Merging genomics and transcriptomics for predicting Fusarium head blight resistance in wheat. Genes 12(1):114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirdita V, He S, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2015) Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theor Appl Genet 128:2471–2481

    Article  CAS  PubMed  Google Scholar 

  • Muhammed Azharudheen TP, Molla KA, Anilkumar C, Sah RP (2022) Advanced Technologies for Climate-Smart Breeding. In: Bhattacharyya P, Chakraborty K, Molla KA, Poonam A, Bhaduri, D, Sah RP, Paul S, Hanjagi PS, Basana-Gowda G, Swain P (Eds.) Climate Resilient Technologies for Rice based Production Systems in Eastern India. ICAR-National Rice Research Institute, Cuttack, Odisha, India, pp 408.

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Nsibi M, Gouble B, Bureau S, Flutre T, Sauvage C, Audergon JM, Regnard JL (2020) Adoption and optimization of genomic selection to sustain breeding for apricot fruit quality. G3 10:4513–4529

  • Onogi A, Ideta O, Inoshita Y, Ebana K, Yoshioka T, Yamasaki M, Iwata H (2015) Exploring the areas of applicability of whole-genome prediction methods for Asian rice (Oryza sativa L.). Theor Appl Genet 128:41–53

    Article  PubMed  Google Scholar 

  • Onogi A, Watanabe M, Mochizuki T, Hayashi T, Nakagawa H, Hasegawa T, Iwata H (2016) Toward integration of genomic selection with crop modelling: the development of an integrated approach to predicting rice heading dates. Theor Appl Genet 129:805–817

    Article  PubMed  Google Scholar 

  • Ornella L, Singh S, Perez P, Burgue J, Singh R (2012) Genomic prediction of genetic values for resistance to wheat rusts. Plant Genome 5:136–148

    Article  CAS  Google Scholar 

  • Pardey PG, Beddow JM, Hurley TM, Beatty TK, Eidman VR (2014) The International agricultural prospects model: assessing consumption and production futures through 2050 (version 2.1)

  • Pandey MK, Agarwal G, Rathore A, Janila P, Upadhyaya HD, Varshney RK (2015) Development of high density 60K “Axiom_Arachis” SNP Chip and optimization of genomic selection model for enhancing breeding efficiency in peanut. Proceedings of 8th international conference of the Peanut Research Community on “Advances in Arachis through Genomics and Biotechnology”, Brisbane, 5–9

  • Pérez-Cabal M, Vazquez AI, Gianola D, Rosa GJ, Weigel KA (2012) Accuracy of genome-enabled prediction in a dairy cattle population using different cross-validation layouts. Front Genet 3:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierre SC, Burgueño J, Crossa J, Dávila GF, López PF, Moya ES, Moreno JI, Muela VH, Villa VZ, Vikram P, Mathews K (2016) Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Sci Rep 6:1–11

    Google Scholar 

  • Poland JA, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    CAS  Google Scholar 

  • Poland J, Rutkoski J (2016) Advances and challenges in genomic selection for disease resistance. Annu Rev Phytopathol 54:79–98

    Article  CAS  PubMed  Google Scholar 

  • Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, Bredeson JV, Bart RS, Verma J, Buckler ES, Lu F (2017) Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat Genet 49:959–963

    Article  CAS  PubMed  Google Scholar 

  • Ravelombola W, Qin J, Shi A, Song Q, Yuan J, Wang F, Chen P, Yan L, Feng Y, Zhao T, Meng Y (2021) Genome-wide association study and genomic selection for yield and related traits in soybean. PLoS ONE 16:e0255761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Kilian A, Grattapaglia D (2012a) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128

    Article  PubMed  Google Scholar 

  • Resende MFR, Munoz P, Acosta JJ, Peter GF, Davis JM, Grattapaglia D, Resende MDV, Kirst M (2012b) Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytol 193:617–624

    Article  PubMed  Google Scholar 

  • Rice B, Lipka AE (2019) Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum. Plant Genome 12(1):180052

    Article  Google Scholar 

  • Riedelsheimer C, Melchinger AE (2013) Optimizing the allocation of resources for genomic selection in one breeding cycle. Theor Appl Genet 126:2835–2848

    Article  CAS  PubMed  Google Scholar 

  • Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y, Hickey JM, Lorenz A, Sutton T, Crossa J, Jannink JL, Varshney RK (2016) Genome-Enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink JL, Sorrells M (2012) Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51

    Article  CAS  Google Scholar 

  • Rutkoski JE (2019) Estimation of realized rates of genetic gain and indicators for breeding program assessment. Crop Sci 59:981–993

    Article  Google Scholar 

  • Sallam AH, Endelman JB, Jannink JL, Smith KP (2015) Assessing genomic selection prediction accuracy in a dynamic barley breeding population. Plant Genome 8:1–15

    Article  CAS  Google Scholar 

  • Sandhu K, Patil SS, Pumphrey M, Carter A (2021a) Multitrait machine- and deep-learning models for genomic selection using spectral information in a wheat breeding program. Plant Genome 14(3):e20119

    Article  CAS  PubMed  Google Scholar 

  • Sandhu KS, Lozada DN, Zhang Z, Pumphrey MO, Carter AH (2021b) Deep learning for predicting complex traits in spring wheat breeding program. Front Plant Sci 11:613325

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223

    Article  CAS  PubMed  Google Scholar 

  • Schrag TA, Westhues M, Schipprack W, Seifert F, Thiemann A, Scholten S, Melchinger AE (2018) Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize. Genet 208:1373–1385

    Article  CAS  Google Scholar 

  • Schulz-Streeck T, Ogutu JO, Gordillo A, Karaman Z, Knaak C, Piepho HP (2013) Genomic selection allowing for marker-by-environment interaction. Plant Breed 132:532–538

    Article  Google Scholar 

  • Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci 8:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JS, Hussain T, Jones ES, Graham G, Podlich D, Wall S, Williams M (2008) Use of doubled haploids in maize breeding: implications for intellectual property protection and genetic diversity in hybrid crops. Mol Breed 22:51–59

    Article  Google Scholar 

  • Song J, Carver BF, Powers C, Yan L, Klápště J, El-Kassaby YA, Chen C (2017) Practical application of genomic selection in a doubled-haploid winter wheat breeding program. Mol Breed 37(10):1–5

    Article  CAS  Google Scholar 

  • Sorrells ME (2015) Genomic selection in plants: empirical results and implications for wheat breeding. In Advances in wheat genetics: from genome to field 2015 (pp. 401–409). Springer, Tokyo.

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, Atlin G, Jannink J-L, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa). Effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genetics 11:e1004982

  • Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, Jannink JL, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116(4):395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spindel J, Iwata H (2018) Genomic Selection in Rice Breeding Sasaki T, Ashikari M (eds.), Rice Genomics, Genetics and Breeding. Springer. 473–496

  • Stewart-Brown BB, Song Q, Vaughn JN, Li Z (2019) Genomic selection for yield and seed composition traits within an applied soybean breeding program. G3-GENE GENOM GENET 9:2253–2265

  • Storlie E, Charmet G (2013) Genomic selection accuracy using historical data generated in a wheat breeding program. Plant Genome 6(1):plantgenome

  • Sun J, Poland JA, Mondal S, Crossa J, Juliana P, Singh RP, Rutkoski JE, Jannink JL, Crespo-Herrera L, Velu G, Huerta-Espino J (2019) High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Theor Appl Genet 132(6):1705–1720

    Article  CAS  PubMed  Google Scholar 

  • Tessema BB, Liu H, Sørensen AC, Andersen JR, Jensen J (2020) Strategies using genomic selection to increase genetic gain in breeding programs for wheat. Front Genet 11:578123

    Article  PubMed  PubMed Central  Google Scholar 

  • Thavamanikumar S, Dolferus R, Thumma BR (2015) Comparison of genomic selection models to predict flowering time and spike grain number in two hexaploid wheat doubled haploid populations. G3 5(10):1991–1998

  • Tripodi P, Massa D, Venezia A, Cardi T (2018) Sensing technologies for precision phenotyping in vegetable crops: current status and future challenges. Agron 8:57

    Article  Google Scholar 

  • Tsai HY, Cericola F, Edriss V, Andersen JR, Orabi J, Jensen JD, Jahoor A, Janss L, Jensen J (2020) Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data. PLoS ONE 15:e0232665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velu G, Crossa J, Singh RP, Hao Y, Dreisigacker S, Perez-Rodriguez P, Joshi AK, Chatrath R, Gupta V, Balasubramaniam A, Tiwari C, Mishra VK, Sohu VS, Mavi GS (2016) Genomic prediction for grain zinc and iron concentrations in spring wheat. Theor Appl Genet 129:1595–1605

    Article  CAS  PubMed  Google Scholar 

  • Verges VL, Lyerly J, Dong Y, Van Sanford DA (2020) Training population design with the use of regional Fusarium head blight nurseries to predict independent breeding lines for FHB traits. Front Plant Sci 11:1083

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma RL, Katara JL, Anilkumar C, Devanna BN, Parameswaran C, Dash B, Samantaray S (2021) Advanced breeding strategies for rice improvement. In: Nayak AK, Samantaray S, Baig MJ, Tripathi R, Kumar U, Devanna BN, Maiti D Rice Research: Recent Advances and Perspective. ICAR-National Rice Research Institute, Cuttack, Odisha, India

  • Voss-Fels KP, Herzog E, Dreisigacker S, Sukumaran S, Watson A, Frisch M, Hayes B, Hickey LT (2019a) “SpeedGS” to accelerate genetic gain in spring wheat. In: Applications of genetic and genomic research in cereals. (pp. 303–327). Woodhead Publishing

  • Voss-Fels KP, Cooper M, Hayes BJ (2019b) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132:669–686

    Article  PubMed  Google Scholar 

  • Wang Y, Mette MF, Miedaner T, Gottwald M, Wilde P, Reif JC, Zhao Y (2014) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genom 15:556

    Article  Google Scholar 

  • Wang X, Li L, Yang Z, Zheng X, Yu S, Xu C, Hu Z (2017) Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II. Heredity 118:302–310

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: Current status and prospects. Crop J 6:330–340

    Article  Google Scholar 

  • Wang S, Wei J, Li R, Qu H, Chater JM, Ma R, Li Y, Xie W, Jia Z (2019) Identification of optimal prediction models using multi-omic data for selecting hybrid rice. Heredity 123(3):395–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Wang H, Zhang A, Liu Y, Yu D, Hao Z, Ilut D, Glaubitz JC, Gao Y, Jones E, Olsen M (2020) Genomic prediction across years in a maize doubled haploid breeding program to accelerate early-stage testcross testing. Theor Appl Genet 133(10):2869–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, AsyrafHatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Watson A, Christopher HLT, J, Rutkoski J, Poland J, Hayes BJ, (2019) Multivariate genomic selection and potential of rapid indirect selection with speed breeding in spring wheat. Crop Sci 59:1945–1959

    Article  Google Scholar 

  • Westhues M, Schrag TA, Heuer C, Thaller G, Utz HF, Schipprack W, Thiemann A, Seifert F, Ehret A, Schlereth A, Stitt M (2017) Omics-based hybrid prediction in maize. Theor Appl Genet 130(9):1927–1939

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, Kulakow P, Lozano R, Del Carpio DP, Ramu P, Jannink JL (2016) Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. Plant Genome 9:1–13

    Article  CAS  Google Scholar 

  • Wong CK, Bernardo R (2008) Genome wide selection in oil palm: Increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68:2641–2666

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Liu X, Fu J, Wang H, Wang J, Huang C, Prasanna BM, Olsen MS, Wang G, Zhang A (2020) Enhancing genetic gain through genomic selection: from livestock to plants. Plant Commun 1:100005

    Article  PubMed  Google Scholar 

  • Xu Y (2010) Molecular Plant Breeding (Wallingford, UK: CABI Publishing)

  • Xu Y (2012) Environmental assaying or e-typing as a key component for integrated plant breeding platform. In: Marker-Assisted Selection Workshop, 6th International Crop Science Congress, August 6–10, 2012, Bento Goncalves, RS, Brazil

  • Yabe S, Iwata H, Jannink JL (2017) A simple package to script and simulate breeding schemes: the breeding scheme language. Crop Sci 57:1347–1354

    Article  Google Scholar 

  • Yamamoto E, Kataoka S, Shirasawa K, Noguchi Y, Isobe S (2021) Genomic Selection for F1 Hybrid Breeding in Strawberry (Fragaria × ananassa). Front Plant Sci 12:308

    Article  Google Scholar 

  • Yang J, Mezmouk S, Baumgarten A, Buckler ES, Guill KE, McMullen MD, Mumm RH, Ross-Ibarra J (2017) Incomplete dominance of deleterious alleles contributes substantially to trait variation and heterosis in maize. PLoS Genet 13:e1007019

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Sallam A, Gao L, Kantarski T, Poland JA, DeHaan LR, Wyse DL, Anderson JA (2016) Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass. Plant Genome 9:1–8

    Article  Google Scholar 

  • Zhang X, Pérez-Rodríguez P, Burgueño J, Olsen M, Buckler E, Atlin G, Prasanna BM, Vargas M, San Vicente F, Crossa J (2017) Rapid cycling genomic selection in a multiparental tropical maize population. G3 Gene Genom Genet 7:2315–2326

  • Zhang A, Pérez-Rodríguez P, San Vicente F, Palacios-Rojas N, Dhliwayo T, Liu Y, Cui Z, Guan Y, Wang H, Zheng H, Olsen M (2021) Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize. Crop J. https://doi.org/10.1016/j.cj.2021.04.007

    Article  Google Scholar 

  • Zhao Y, Gowda M, Liu W, Würschum T, Maurer HP, Longin FH, Ranc N, Reif JC (2012) Accuracy of genomic selection in European maize elite breeding populations. Theor Appl Genet 124:769–776

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thankful to ICAR for providing support for research in the area of genomic selection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anilkumar, C., Sunitha, N.C., Harikrishna et al. Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review. Planta 256, 87 (2022). https://doi.org/10.1007/s00425-022-03996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03996-y

Keywords

Navigation