Skip to main content
Log in

AtFTCD-L, a trans-Golgi network localized protein, modulates root growth of Arabidopsis in high-concentration agar culture medium

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

AtFTCD-L protein is localized on the TGN vesicles in Arabidopsis root cap cells. AtFTCD-L mutation resulted in slow root growth of Arabidopsis in high-concentration agar culture medium.

Abstract

Arabidopsis formiminotransferase cyclodeaminase-like protein (AtFTCD-L) in Arabidopsis is homologous to the formiminotransferase cyclodeaminase (FTCD) protein in animal cells. However, the localization and function of AtFTCD-L remain unknown in Arabidopsis. In this study, we generated and analyzed a deletion mutant of AtFTCD-L with a T-DNA insertion. We found that the growth of Arabidopsis roots with the T-DNA insertion mutation in AtFTCD-L was slower than that of wild-type roots when grown in high-concentration 1/2 MS agar culture medium. AtFTCD-L-GFP could restore the ftcd-l mutant phenotype. In addition, the AtFTCD-L protein was localized on the trans-Golgi network (TGN) vesicles in Arabidopsis root cap cells. Fluorescence recovery after photobleaching (FRAP) experiment using Arabidopsis pollen-specific receptor-like kinase-GFP (AtPRK1-GFP) stably transformed plants showed that the deficiency of AtFTCD-L protein in Arabidopsis led to slower secretion in the root cap peripheral cells. The AtFTCD-L protein deficiency also resulted in a significantly reduced monosaccharides content in the culture medium. Based on the above results, we speculate that the AtFTCD-L protein may be involved in sorting and/or transportation of TGN vesicles in root cap peripheral cells, thereby regulating the extracellular secretion of mucilage components in the root cap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the manuscript.

Abbreviations

AtFTCD-L:

Arabidopsis Formiminotransferase cyclodeaminase-like protein

AtPRK1:

Arabidopsis Pollen-specific receptor-like kinase 1

FRAP:

Fluorescence recovery after photobleaching

TGN:

trans-Golgi network

References

  • Andreeva AV, Kutuzov MA, Evans DE, Hawes CR (1998) The structure and function of the Golgi apparatus: a hundred years of questions. J Exp Bot 49:1281–1291

    Article  CAS  Google Scholar 

  • Anitei M, Hoflack B (2011) Exit from the trans-Golgi network: from molecules to mechanisms. Curr Opin Plant Biol 23:443–451

    Article  CAS  Google Scholar 

  • Bacic A, Moody SF, Clarke AE (1986) Structural analysis of secreted root slime from maize (Zea mays L.). Plant Physiol 80:771–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashour AM, Bloom GS (1998) 58K, a microtubule-binding Golgi protein, is a formiminotransferase cyclodeaminase. J Biol Chem 273:19612–19617

    Article  CAS  PubMed  Google Scholar 

  • Beaudet R, Mackenzie RE (1976) Formiminotransferase.cyclodeaminase from porcine liver - octomeric enzyme containing bifunctional polypeptides. Biochim Biophys Acta 453:151–161

    Article  CAS  PubMed  Google Scholar 

  • Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68

    Article  CAS  PubMed  Google Scholar 

  • Berson T, von Wangenheim D, Takac T, Samajova O, Rosero A, Ovecka M, Komis G, Stelzer EHK, Samaj J (2014) Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth. BMC Plant Biol 14:16

    Article  CAS  Google Scholar 

  • Bloom GS, Brashear TA (1989) A novel 58-kDa protein associates with the Golgi-apparatus and microtubules. J Biol Chem 264:16083–16092

    Article  CAS  PubMed  Google Scholar 

  • Boevink P, Oparka K, Cruz SS, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  CAS  PubMed  Google Scholar 

  • Carminati A, Vetterlein D (2013) Plasticity of rhizosphere hydraulic properties as a key for efficient utilization of scarce resources. Ann Bot 112:277–290

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang W, Zhao L, Li Y (2008) AtGRIP protein locates to the secretory vesicles of trans Golgi-network in Arabidopsis root cap cells. Chinese Sci Bull 53:3191–3197

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Robinson DG, Jiang LW (2014) Unconventional protein secretion (UPS) pathways in plants. Curr Opin Plant Biol 29:107–115

    Article  CAS  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular-organization of the Arabidopsis thaliana root. Development 119:71–84

    Article  CAS  PubMed  Google Scholar 

  • Dupree P, Sherrier DJ (1998) The plant Golgi apparatus. Biochim Biophys Acta 1404:259–270

    Article  CAS  PubMed  Google Scholar 

  • Faso C, Boulaflous A, Brandizzi F (2009) The plant Golgi apparatus: last 10 years of answered and open questions. FEBS Lett 583:3752–3757

    Article  CAS  PubMed  Google Scholar 

  • Gao YS, Alvarez C, Nelson DS, Sztul E (1998) Molecular cloning, characterization, and dynamics of rat formiminotransferase cyclodeaminase, a Golgi-associated 58-kDa protein. J Biol Chem 273:33825–33834

    Article  CAS  PubMed  Google Scholar 

  • Gao YS, Vrielink A, MacKenzie R, Sztul E (2002) A novel type of regulation of the vimentin intermediate filament cytoskeleton by a Golgi protein. Eur J Cell Biol 81:391–401

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Denervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendre D, Jonsson K, Boutte Y, Bhalerao RP (2015) Journey to the cell surface-the central role of the trans-Golgi network in plants. Protoplasma 252:385–398

    Article  CAS  PubMed  Google Scholar 

  • Glick BS, Nakano A (2009) Membrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol 25:113–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goud B, Gleeson PA (2010) TGN golgins, Rabs and cytoskeleton: regulating the Golgi trafficking highways. Trends Cell Biol 20:329–336

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara H, Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Takata K (2006) Localization of Golgi 58K protein (formiminotransferase cyclodeaminase) to the centrosome. Histochem Cell Biol 126:251–259

    Article  CAS  PubMed  Google Scholar 

  • Hawes C (2005) Cell biology of the plant Golgi apparatus. New Phytol 165:29–44

    Article  PubMed  Google Scholar 

  • Hennig D, Scales SJ, Moreau A, Murley LL, De Mey J, Kreis TE (1998) A formiminotransferase cyclodeaminase isoform is localized to the Golgi complex and can mediate interaction of trans-Golgi network-derived vesicles with microtubules. J Biol Chem 273:19602–19611

    Article  CAS  PubMed  Google Scholar 

  • Iijima M, Kono Y (1992) Development of Golgi-apparatus in the root cap cells of maize (Zea mays L) as affected by compacted soil. Ann Bot 70:207–212

    Article  Google Scholar 

  • Iijima M, Barlow PW, Bengough AG (2003a) Root cap structure and cell production rates of maize (Zea mays) roots in compacted sand. New Phytol 160:127–134

    Article  PubMed  Google Scholar 

  • Iijima M, Higuchi T, Barlow PW, Bengough AG (2003b) Root cap removal increases root penetration resistance in maize (Zea mays L.). J Exp Bot 54:2105–2109

    Article  CAS  PubMed  Google Scholar 

  • Iijima M, Higuchi T, Barlow PW (2004) Contribution of root cap mucilage and presence of an intact root cap in maize (Zea mays) to the reduction of soil mechanical impedance. Ann Bot 94:473–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Iijima M, Morita S, Barlow PW (2008) Structure and function of the root cap. Plant Prod Sci 11:17–27

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang B-H, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA (2011) Electron tomography of RabA4b-and PI-4K beta 1-labeled trans Golgi network compartments in Arabidopsis. Traffic 12:313–329

    Article  CAS  PubMed  Google Scholar 

  • Kienzle C, von Blume J (2014) Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol 24:584–593

    Article  CAS  PubMed  Google Scholar 

  • Kim S-J, Brandizzi F (2014) The plant secretory pathway: an essential factory for building the plant cell wall. Plant Cell Physiol 55:687–693

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Latijnhouwers M, Hawes C, Carvalho C, Oparka K, Gillingham AK, Boevink P (2005) An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. Plant J 44:459–470

    Article  CAS  PubMed  Google Scholar 

  • Latijnhouwers M, Gillespie T, Boevink P, Kriechbaumer V, Hawes C, Carvalho CM (2007) Localization and domain characterization of Arabidopsis golgin candidates. J Exp Bot 58:4373–4386

    Article  CAS  PubMed  Google Scholar 

  • Lee YRJ, Liu B (2000) Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr Biol 10:797–800

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fischette-Laine AC, Gomord V, Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48

    Article  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Roberts TH, Hirschberg K (2000) Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol 16:557–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A gamma-tubulin-related protein associated with the microtubule arrays of higher-plants in a cell cycle-dependent manner. J Cell Sci 104:1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Mao YX, Vyas NK, Vyas MN, Chen DH, Ludtke SJ, Chiu W, Quiocho FA (2004) Structure of the bifunctional and Golgi-associated formiminotransferase cyclodeaminase octamer. EMBO J 23:2963–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano A, Luini A (2010) Passage through the Golgi. Curr Opin Plant Biol 22:471–478

    Article  CAS  Google Scholar 

  • Nebenführ A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1141

    Article  PubMed  PubMed Central  Google Scholar 

  • Olmsted JB (1981) Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. J Biol Chem 256:1955–1957

    Google Scholar 

  • Papanikou E, Glick BS (2014) Golgi compartmentation and identity. Curr Opin Plant Biol 29:74–81

    Article  CAS  Google Scholar 

  • Poulsen LR, Lopez-Marques RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski T, Harper JF, Palmgren MG (2008) The Arabidopsis P4-ATPase ALA3 localizes to the Golgi and requires a beta-subunit to function in lipid translocation and secretory vesicle formation. Plant Cell 20:658–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosquete MR, Davis DJ, Drakakaki G (2018) The plant trans-Golgi network: not just a matter of distinction. Plant Physiol 176:187–198

    Article  CAS  PubMed  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    Article  CAS  Google Scholar 

  • Ruiz-May E, Kim S-J, Brandizzi F, Rose JKC (2012) The secreted plant N-glycoproteome and associated secretory pathways. Front Plant Sci 3:117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staehelin LA, Giddings TH, Kiss JZ, Sack FD (1990) Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples. Protoplasma 157:75–91

    Article  CAS  PubMed  Google Scholar 

  • Stefano G, Renna L, Hanton SL, Chatre L, Haas TA, Brandizzi F (2006) ARL1 plays a role in the binding of the GRIP domain of a peripheral matrix protein to the Golgi apparatus in plant cells. Plant Mol Biol 61:431–449

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets - procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Cai Y, Wang H, Zeng Y, Zhuang X, Li B, Jiang L (2014) Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. Plant Cell 26:4102–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang PF, Chen XS, Goldbeck C, Chung E, Kang BH (2017) A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell. Plant J 92:596–610

    Article  CAS  PubMed  Google Scholar 

  • Wee EGT, Sherrier DJ, Prime TA, Dupree P (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei L, Li Y (2009) Distribution of an ankyrin-repeat protein on the endoplasmic reticulum in Arabidopsis. J Integr Plant Biol 51:140–146

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Zhang W, Liu Z, Li Y (2009) AtKinesin-13A is located on Golgi-associated vesicle and involved in vesicle formation/budding in Arabidopsis root-cap peripheral cells. BMC Plant Biol 9:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worden N, Park E, Drakakaki G (2012) Trans-Golgi network-an intersection of trafficking cell wall components. J Integr Plant Biol 54:875–886

    CAS  PubMed  Google Scholar 

  • Zhao L, Li Y (2014) The C-terminus of AtGRIP is crucial for its self-association and for targeting to Golgi stacks in Arabidopsis. PLoS ONE 9:e98963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Institute for Agricultural Resesrch (INRA) for providing the T-DNA insertion line. We thank Dr. Zhenbiao Yang (University of California, Riverside) for the gift of the plasmid contained AtPRK1. We thank Dr. Yan Guo (China Agricultural University) for kindly providing the seeds of the Arabidopsis line expressing mCherry-VTI12. This study was supported by the National Natural Science Foundation of China (30971435 and 31270230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 910 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Zhang, W., Liu, X. et al. AtFTCD-L, a trans-Golgi network localized protein, modulates root growth of Arabidopsis in high-concentration agar culture medium. Planta 256, 3 (2022). https://doi.org/10.1007/s00425-022-03911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03911-5

Keywords

Navigation