Skip to main content
Log in

Localization of Golgi 58K protein (formiminotransferase cyclodeaminase) to the centrosome

  • Original paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In vertebrate cells, the centrosome consists of a pair of centrioles and surrounding pericentriolar material. Using anti-Golgi 58K protein antibodies that recognize formiminotransferase cyclodeaminase (FTCD), we investigated its localization to the centrosome in various cultured cells and human oviductal secretory cells by immunohistochemistry. In addition to the Golgi apparatus, FTCD was localized to the centrosome, more abundantly around the mother centriole. The centrosome localization of FTCD continued throughout the cell cycle and was not disrupted after Golgi fragmentation, which was induced by colcemid and brefeldin A. Centriole microtubules are polyglutamylated and stable against tubulin depolymerizing drugs. FTCD in the centrosome may be associated with polyglutamylated residues of centriole microtubules and may play a role in providing centrioles with glutamate produced by cyclodeaminase domains of FTCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bashour AM, Bloom GS (1998) 58K, a microtubule-binding Golgi protein, is a formiminotransferase cyclodeaminase. J Biol Chem 273:19612–19617

    Article  PubMed  CAS  Google Scholar 

  • Bloom GS, Brashear TA (1989) A novel 58-kDa protein associates with the Golgi apparatus and microtubules. J Biol Chem 264:16083–16092

    PubMed  CAS  Google Scholar 

  • Bobinnec Y, Khodjakov A, Mir LM, Rieder CL, Edde B, Bornens M (1998a) Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J Cell Biol 143:1575–1589

    Article  PubMed  CAS  Google Scholar 

  • Bobinnec Y, Moudjou M, Fouquet JP, Desbruyeres E, Edde B, Bornens M (1998b) Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil Cytoskeleton 39:223–232

    Article  PubMed  CAS  Google Scholar 

  • Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25–34

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB (1997) Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139:469–484

    Article  PubMed  CAS  Google Scholar 

  • Campbell PK, Waymire KG, Heier RL, Sharer C, Day DE, Reimann H, Jaje JM, Friedrich GA, Burmeister M, Bartness TJ, Russell LD, Young LJ, Zimmer M, Jenne DE, MacGregor GR (2002) Mutation of a novel gene results in abnormal development of spermatid flagella, loss of intermale aggression and reduced body fat in mice. Genetics 162:307–320

    PubMed  CAS  Google Scholar 

  • Chang P, Giddings TH Jr, Winey M, Stearns T (2003) Epsilon-tubulin is required for centriole duplication and microtubule organization. Nat Cell Biol 5:71–76

    Article  PubMed  CAS  Google Scholar 

  • Delgehyr N, Sillibourne J, Bornens M (2005) Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 118:1565–1575

    Article  PubMed  CAS  Google Scholar 

  • Eddé B, Rossier J, Le Caer JP, Desbruyeres E, Gros F, Denoulet P (1990) Posttranslational glutamylation of alpha-tubulin. Science 247:83–85

    Article  PubMed  Google Scholar 

  • Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y (1988) Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263:18545–18552

    PubMed  CAS  Google Scholar 

  • Gao Y, Sztul E (2001) A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J Cell Biol 152:877–894

    Article  PubMed  CAS  Google Scholar 

  • Gao YS, Alvarez C, Nelson DS, Sztul E (1998) Molecular cloning, characterization, and dynamics of rat formiminotransferase cyclodeaminase, a Golgi-associated 58-kDa protein. J Biol Chem 273:33825–33834

    Article  PubMed  CAS  Google Scholar 

  • Geimer S, Teltenkotter A, Plessmann U, Weber K, Lechtreck KF (1997) Purification and characterization of basal apparatuses from a flagellate green alga. Cell Motil Cytoskeleton 37:72–85

    Article  PubMed  CAS  Google Scholar 

  • Gromley A, Jurczyk A, Sillibourne J, Halilovic E, Mogensen M, Groisman I, Blomberg M, Doxsey S (2003) A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J Cell Biol 161:535–545

    Article  PubMed  CAS  Google Scholar 

  • Grissom PM, Vaisberg EA, McIntosh JR (2002) Identification of a novel light intermediate chain (D2LIC) for mammalian cytoplasmic dynein 2. Mol Biol Cell 13:817–829

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara H, Aoki T, Ohwada N, Fujimoto T (2000a) Identification of a 195 kDa protein in the striated rootlet: its expression in ciliated and ciliogenic cells. Cell Motil Cytoskeleton 45:200–210

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara H, Kano A, Aoki T, Ohwada N (2000b) Immunocytochemistry of the striated rootlets associated with solitary cilia in human oviductal secretory cells. Histochem Cell Biol 114:205–212

    PubMed  CAS  Google Scholar 

  • Hagiwara H, Ohwada N, Takata K (2004) Cell biology of normal and abnormal ciliogenesis in the ciliated epithelium. Int Rev Cytol 234:101–141

    Article  PubMed  Google Scholar 

  • Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N (1988) Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol 141:51–59

    Article  Google Scholar 

  • Hennig D, Scales SJ, Moreau A, Murley LL, De Mey J, Kreis TE (1998) A formiminotransferase cyclodeaminase isoform is localized to the Golgi complex and can mediate interaction of trans-Golgi network-derived vesicles with microtubules. J Biol Chem 273:19602–19611

    Article  PubMed  CAS  Google Scholar 

  • Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub JM, Temurak N, van Dijk J, Boucher D, van Dorsselaer A, Suryavanshi S, Gaertig J, Edde B (2005) Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308:1758–1762

    Article  PubMed  CAS  Google Scholar 

  • Job D, Valiron O, Oakley B (2003) Microtubule nucleation. Curr Opin Cell Biol 15:111–117

    Article  PubMed  CAS  Google Scholar 

  • Klausner RD, Donaldson JG, Lippincott-Schwartz J (1992) Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol 116:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Lapierre P, Johanet C, Alvarez F (2003) Characterization of the B cell response of patients with anti-liver cytosol autoantibodies in type 2 autoimmune hepatitis. Eur J Immunol 33:1869–1878

    Article  PubMed  CAS  Google Scholar 

  • Murley LL, MacKenzie RE (1995) The two monofunctional domains of octameric formiminotransferase–cyclodeaminase exist as dimers. Biochemistry 34:10358–10364

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Yamane Y, Okanoue T, Tsukita S, Tsukita S (2001) Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol Biol Cell 12:1687–1697

    PubMed  CAS  Google Scholar 

  • Paintrand M, Moudjou M, Delacroix H, Bornens M (1992) Centrosome organization and centriole architecture: their sensitivity to divalent cations. J Struct Biol 108:107–128

    Article  PubMed  CAS  Google Scholar 

  • Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529

    Article  PubMed  CAS  Google Scholar 

  • Rapley J, Baxter JE, Blot J, Wattam SL, Casenghi M, Meraldi P, Nigg EA, Fry AM (2005) Coordinate regulation of the mother centriole component Nlp by Nek2 and Plk1 protein kinases. Mol Cell Biol 25:1309–1324

    Article  PubMed  CAS  Google Scholar 

  • Redeker V, Rossier J, Frankfurter A (1998) Posttranslational modifications of the C-terminus of alpha-tubulin in adult rat brain: alpha 4 is glutamylated at two residues. Biochemistry 37:14838–14844

    Article  PubMed  CAS  Google Scholar 

  • Regnard C, Fesquet D, Janke C, Boucher D, Desbruyeres E, Koulakoff A, Insina C, Travo P, Edde B (2003) Characterisation of PGs1, a subunit of a protein complex co-purifying with tubulin polyglutamylase. J Cell Sci 116:4181–4190

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt D (1995) Inherited disorders of folate transport and metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited diseases. McGraw-Hill, New York, pp 3111–3128

    Google Scholar 

  • Sandoval IV, Bonifacino JS, Klausner RD, Henkart M, Wehland J (1984) Role of microtubules in the organization and localization of the Golgi apparatus. J Cell Biol 99(1 Pt 2):113s–118s

    Article  PubMed  CAS  Google Scholar 

  • Shane B, Stokstad ELR (1984) Folates in the synthesis and catabolism of histidine. In: Blakey RL, Benkovic SJ (eds) Folates and pterins, vol 1. Wiley, New York, pp 433–455

  • Shanks RA, Steadman BT, Schmidt PH, Goldenring JR (2002) AKAP350 at the Golgi apparatus. I. Identification of a distinct Golgi apparatus targeting motif in AKAP350. J Biol Chem 277:40967–40972

    Article  PubMed  CAS  Google Scholar 

  • Solans A, Estivill X, de La Luna S (2000) Cloning and characterization of human FTCD on 21q22.3, a candidate gene for glutamate formiminotransferase deficiency. Cytogenet Cell Genet 88:43–49

    Article  PubMed  CAS  Google Scholar 

  • Takatsuki A, Nakamura M, Kono Y (2002) Possible implication of Golgi-nucleating function for the centrosome. Biochem Biophys Res Commun 291:494–500

    Article  PubMed  CAS  Google Scholar 

  • Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246:263–279

    Article  PubMed  CAS  Google Scholar 

  • Westermann S, Weber K (2002) Identification of CfNek, a novel member of the NIMA family of cell cycle regulators, as a polypeptide copurifying with tubulin polyglutamylation activity in Crithidia. J Cell Sci 115:5003–5012

    Article  PubMed  CAS  Google Scholar 

  • Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Takeda S, Nakata T, Noda Y, Tanaka Y, Hirokawa N (2002) Role of KIFC3 motor protein in Golgi positioning and integration. J Cell Biol 158:293–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-aid for Scientific Research from the Ministry of Education, Culture, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruo Hagiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, H., Tajika, Y., Matsuzaki, T. et al. Localization of Golgi 58K protein (formiminotransferase cyclodeaminase) to the centrosome. Histochem Cell Biol 126, 251–259 (2006). https://doi.org/10.1007/s00418-006-0166-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0166-5

Keywords

Navigation