Skip to main content

Advertisement

Log in

Genome-wide transcriptome analysis and characterization of the cytochrome P450 flavonoid biosynthesis genes in pigeon pea (Cajanus cajan)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

226 CcCYP450 genes were identified at the genomic level and were classified into 45 clades based on phylogenetic analysis. CcCYP75B165 gene was found that might play important roles in the biosynthesis of flavonoids in pigeon pea, and was significantly induced by methyl jasmonate (MeJA).

Abstract

The cytochrome P450 mono-oxygenase (CYP450) superfamily plays a key role in the flavonoid biosynthesis pathway and resists different kinds of stresses. Several CYP450 genes have been identified to be involved in the biosynthesis of crop protection agents. However, the CcCYP450 genes from pigeon pea have not been identified. Here, 226 CcCYP450 genes were identified at the genomic level by analysing the gene structure, distribution on chromosomes, gene duplication, and conserved motifs and were classified into 45 clades based on phylogenetic analysis. RNA-seq analysis revealed clear details of CcCYP450 genes that varied with time of MeJA (methyl jasmonate) induction. Among them, six CcCYP450 subfamily genes were found that might play important roles in the biosynthesis of flavonoids in pigeon pea. The overexpression of CcCYP75B165 in pigeon pea significantly induced the accumulation of genistin and downregulated the contents of cajaninstilbene acid, apigenin, isovitexin, and genistein and the expression of flavonoid synthase genes. This study provides theoretical guidance and plant genetic resources for cultivating new pigeon pea varieties with high flavonoid contents and exploring the molecular mechanisms of the biosynthesis of flavonoids under MeJA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  • Association Joint Surgery Group of the Orthopaedic Branch of the Chinese Medical, Chen WH, Chen SB, Cheng LM, Gao P, Guo WS, He W, Kang PD, Zr Li, Li J (2015) Guideline for diagnostic and treatment of osteonecrosis of the femoral head. Orthop Surg 7(3):200–207

    Article  Google Scholar 

  • Awasthi P, Gupta AP, Bedi YS, Vishwakarma RA, Gandhi SG (2018) Corrigendum: mannitol stress directs flavonoid metabolism toward synthesis of flavones via differential regulation of two cytochrome P450 monooxygenases in Coleus forskohlii. Front Plant Sci 8:2222

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayenan MAT, Ofori K, Ahoton LE, Danquah A (2017) Pigeonpea [(Cajanus cajan (L.) Millsp.)] production system, farmers’ preferred traits and implications for variety development and introduction in Benin. Agric Food Secur 6(1):1–11

    Article  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(2):W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127(1):108–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bathe U, Frolov A, Porzel A, Tissier A (2019) CYP76 oxidation network of abietane diterpenes in Lamiaceae reconstituted in yeast. J Agric Food Chem 67(49):13437–13450

    Article  CAS  PubMed  Google Scholar 

  • Bentivenha JP, Canassa VF, Baldin EL, Borguini MG, Lima GP, Lourenção AL (2018) Role of the rutin and genistein flavonoids in soybean resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod-Plant Interact 12(2):311–320

    Article  Google Scholar 

  • Boncan DAT, Tsang SS, Li C, Lee IH, Lam HM, Chan TF, Hui JH (2020) Terpenes and terpenoids in plants: interactions with environment and insects. Int J Mol Sci 21(19):7382

    Article  CAS  PubMed Central  Google Scholar 

  • Cao X, Liu L, Yuan Q, Li X, Cui Y, Ren K, Zou C, Chen A, Xu C, Qiu Y (2019) Isovitexin reduces carcinogenicity and stemness in hepatic carcinoma stem-like cells by modulating MnSOD and FoxM1. J Exp Clin Cancer Res 38(1):1–18

    Article  Google Scholar 

  • Carelli M, Biazzi E, Panara F, Tava A, Scaramelli L, Porceddu A, Graham N, Odoardi M, Piano E, Arcioni S (2011) Medicago truncatula CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. Plant Cell 23(8):3070–3081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R (2006) Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3’-hydroxylase, flavonoid 3’, 5’-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. Bmc Genom 7(1):1–17

    Article  CAS  Google Scholar 

  • Castle J, Szekeres M, Jenkins G, Bishop GJ (2005) Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Mol Biol 57(1):129–140

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wu B, Nelson DR, Wu K, Liu C (2014) Computational identification and systematic classification of novel cytochrome P450 genes in Salvia miltiorrhiza. PLoS One 9(12):e115149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Tang X, Ren C, Wei B, Wu Y, Wu Q, Pei J (2018) Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower. BMC Genom 19(1):1–13

    Article  CAS  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020a) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang J, Wang R, Xian B, Ren C, Liu Q, Wu Q, Pei J (2020b) Integrated metabolomics and transcriptome analysis on flavonoid biosynthesis in safflower (Carthamus tinctorius L.) under MeJA treatment. BMC Plant Biol 20(1):1–12

    Article  CAS  Google Scholar 

  • Choi YM, Hyun DY, Lee S, Yoon H, Lee MC, Oh S, Ko HC, Shin MJ, Hur O, Yi JY (2020) Agricultural characters, phenolic and nutritional contents, and antioxidant activities of pigeon pea (Cajanus cajan) germplasms cultivated in the Republic of Korea. Korean J Plant Res 33(1):50–61

    Google Scholar 

  • Das A, Saxena S, Kumar K, Tribhuvan KU, Singh N, Gaikwad K (2020) Non-coding RNAs having strong positive interaction with mRNAs reveal their regulatory nature during flowering in a wild relative of pigeonpea (Cajanus scarabaeoides). Mol Biol Rep 47(5):3305–3317

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Li C, Li H, Lu S (2018) Identification and characterization of flavonoid biosynthetic enzyme genes in Salvia miltiorrhiza (Lamiaceae). Molecules 23(6):1467

    Article  PubMed Central  CAS  Google Scholar 

  • Dhandapani S, Jin J, Sridhar V, Chua NH, Jang IC (2019) CYP79D73 participates in biosynthesis of floral scent compound 2-phenylethanol in Plumeria rubra. Plant Physiol 180(1):171–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Chu H, Chu IK, Lo C (2010) CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice. Plant Physiol 154(1):324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du T, Fan Y, Cao H, Song Z, Dong B, Liu T, Yang W, Wang M, Niu L, Yang Q, Meng D, Fu Y (2021) Transcriptome analysis revealed key genes involved in flavonoid metabolism in response to jasmonic acid in pigeon pea (Cajanus cajan (L.) Millsp.). Plant Physiol Biochem 168:410–422

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Mishra A, Kumar BD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40(2):452–461

    Article  CAS  Google Scholar 

  • Feldmann KA (2001) Cytochrome P450s as genes for crop improvement. Curr Opin Plant Biol 4(2):162–167

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Gbenga-Fabusiwa F, Oladele E, Oboh G, Adefegha S, Fabusiwa O, Osho P (2021) Modulatory effect of pigeon pea-wheat biscuits on lipid profile, lipid peroxidation level, α-glucosidase, and butyrylcholinesterase activities in type-2 diabetic patients. J Food Biochem 45:e13658

    Article  CAS  PubMed  Google Scholar 

  • Grausem B, Widemann E, Verdier G, Nosbüsch D, Aubert Y, Beisson F, Schreiber L, Franke R, Pinot F (2014) CYP 77 A 19 and CYP 77 A 20 characterized from S olanum tuberosum oxidize fatty acids in vitro and partially restore the wild phenotype in an Arabidopsis thaliana cutin mutant. Plant, Cell Env 37(9):2102–2115

    Article  CAS  Google Scholar 

  • Guttikonda SK, Trupti J, Bisht NC, Chen H, An YQC, Pandey S, Xu D, Yu O (2010) Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases. BMC Plant Biol 10(1):1–19

    Article  CAS  Google Scholar 

  • Hao YJ, Cui XH, Li JR, An XL, Sun HD, Piao XC, Lian ML (2020) Cell bioreactor culture of Orostachys cartilaginous A. Bor and involvement of nitric oxide in methyl jasmonate-induced flavonoid synthesis. Acta Physiologiae Plantarum 42(1):1–10

    Article  CAS  Google Scholar 

  • Hori K, Yamada Y, Purwanto R, Minakuchi Y, Toyoda A, Hirakawa H, Sato F (2018) Mining of the uncharacterized cytochrome P450 genes involved in alkaloid biosynthesis in California poppy using a draft genome sequence. Plant Cell Physiol 59(2):222–233

    Article  CAS  PubMed  Google Scholar 

  • Inyushkina Y, Kiselev K, Bulgakov V, Zhuravlev YN (2009) Specific genes of cytochrome P450 monooxygenases are implicated in biosynthesis of caffeic acid metabolites in rolC-transgenic culture of eritrichium sericeum. Biochem Mosc 74(8):917–924

    Article  CAS  Google Scholar 

  • Jung W, Yu O, Lau SMC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18(2):208–212

    Article  CAS  PubMed  Google Scholar 

  • Kaoneka SR, Saxena RK, Silim SN, Odeny DA, Ganga Rao NVPR, Shimelis HA, Siambi M, Varshney RK (2016) Pigeonpea breeding in eastern and southern Africa: challenges and opportunities. Plant Breed 135(2):148–154

    Article  Google Scholar 

  • Krishnamurthy P, Vishal B, Ho WJ, Lok FCJ, Lee FSM, Kumar PP (2020) Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance. Plant Physiol 184(4):2199–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurotani KI, Hayashi K, Hatanaka S, Toda Y, Ogawa D, Ichikawa H, Ishimaru Y, Tashita R, Suzuki T, Ueda M (2015) Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice. Plant Cell Physiol 56(4):779–789

    Article  CAS  PubMed  Google Scholar 

  • Lam PY, Zhu FY, Chan WL, Liu H, Lo C (2014) Cytochrome P450 93G1 is a flavone synthase II that channels flavanones to the biosynthesis of tricin O-linked conjugates in rice. Plant Physiol 165(3):1315–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam PY, Liu H, Lo C (2015) Completion of tricin biosynthesis pathway in rice: cytochrome P450 75B4 is a unique Chrysoeriol 5’-Hydroxylase. Plant Physiol 168(4):1527–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laudert D, Pfannschmidt U, Lottspeich F, Holländer-Czytko H, Weiler EW (1996) Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol Biol 31(2):323–335

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Mohan CD, Shanmugam MK, Rangappa S, Sethi G, Siveen KS, Chinnathambi A, Alahmadi TA, Alharbi SA, Basappa S (2020) Vitexin abrogates invasion and survival of hepatocellular carcinoma cells through targeting STAT3 signaling pathway. Biochimie 175:58–68

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Cheng H, Gai J, Yu D (2007) Genome-wide identification and characterization of putative cytochrome P450 genes in the model legume Medicago truncatula. Planta 226(1):109–123

    Article  CAS  PubMed  Google Scholar 

  • Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y (2010) Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22(1):173–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Shi L, Wang Y, Li W, Chen B, Zhu L, Fu Y (2020a) Arabidopsis ECAP is a new adaptor protein that connects JAZ repressors with the TPR2 co-repressor to suppress jasmonate-responsive anthocyanin accumulation. Mol Plant 13(2):246–265

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen X, Wang J, Zou G, Wang L, Li X (2020b) Two responses to MeJA induction of R2R3-MYB transcription factors regulate flavonoid accumulation in Glycyrrhiza uralensis Fisch. PLoS One 15(7):e0236565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CJ, Huhman D, Sumner LW, Dixon RA (2003) Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J 36(4):471–484

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li WX (2014) b HLH 122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201(4):1192–1204

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Boachon B, Lugan R, Tavares R, Erhardt M, Mutterer J, Demais V, Pateyron S, Brunaud V, Ohnishi T (2015) A conserved cytochrome P450 evolved in seed plants regulates flower maturation. Mol Plant 8(12):1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, Xian X, Li BH, Yao XX, Zhang HH, Wang GQ, Han YJ (2018) Genomic and transcriptomic insights into cytochrome P450 monooxygenase genes involved in nicosulfuron tolerance in maize (Zea mays L.). J Integrative Agric 17(8):1790–1799

    Article  CAS  Google Scholar 

  • Liu X, Zhu X, Wang H, Liu T, Cheng J, Jiang H (2020) Discovery and modification of cytochrome P450 for plant natural products biosynthesis. Synth Syst Biotechnol 5(3):187–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Luck K, Jia Q, Huber M, Handrick V, Wong GKS, Nelson DR, Chen F, Gershenzon J, Köllner TG (2017) CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata. Plant Mol Biol 95(1):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lui AC, Lam PY, Chan KH, Wang L, Tobimatsu Y, Lo C (2020) Convergent recruitment of 5′-hydroxylase activities by CYP75B flavonoid B-ring hydroxylases for tricin biosynthesis in Medicago legumes. New Phytol 228(1):269–284

    Article  CAS  PubMed  Google Scholar 

  • Luo P, Wang YH, Wang GD, Essenberg M, Chen XY (2001) Molecular cloning and functional identification of (+)-δ-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J 28(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Liu X, Zu Y, Fu Y, Zhang S, Yao L, Efferth T (2010) Cajanol, a novel anticancer agent from pigeonpea [Cajanus cajan. (L) Millsp] roots, induces apoptosis in human breast cancer cells through a ROS-mediated mitochondrial pathway. Chemico-Biological Interact 188(1):151–160

    Article  CAS  Google Scholar 

  • Lv G, Liu X, Zeng B, He B (2020) Genome-wide analysis of the cytochromes P450 gene family in Cordyceps militaris. J Phys: Conf Series 1549(3):032069

    CAS  Google Scholar 

  • Ma B, Luo Y, Jia L, Qi X, Zeng Q, Xiang Z, He N (2014) Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis). J Integr Plant Biol 56(9):887–901

    Article  CAS  PubMed  Google Scholar 

  • Magwanga RO, Lu P, Kirungu JN, Dong Q, Cai X, Zhou Z, Wang X, Hou Y, Xu Y, Peng R (2019) Knockdown of cytochrome P450 genes Gh_D07G1197 and Gh_A13G2057 on chromosomes D07 and A13 reveals their putative role in enhancing drought and salt stress tolerance in Gossypium hirsutum. Genes 10(3):226

    Article  CAS  PubMed Central  Google Scholar 

  • Miettinen K, Pollier J, Buyst D, Arendt P, Csuk R, Sommerwerk S, Moses T, Mertens J, Sonawane PD, Pauwels L (2017) The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat Commun 8(1):1–13

    Article  CAS  Google Scholar 

  • Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315

    Article  CAS  PubMed  Google Scholar 

  • Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19(5):1473–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa T, Mizutani M, Ohta D (2006) Cytochrome P450 subfamily CYP710A genes encode sterol C-22 desaturase in plants. Biochem Soc Trans 34(6):1202–1205

    Article  CAS  PubMed  Google Scholar 

  • Mula M, Saxena K (2010) In: William D Dar (ed) Lifting the level of awareness on pigeonpea-a global perspective. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India

    Google Scholar 

  • Nair RB, Joy RW IV, Kurylo E, Shi X, Schnaider J, Datla RS, Keller WA, Selvaraj G (2000) Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds. Plant Physiol 123(4):1623–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama T, Takahashi S, Waki T (2019) Formation of flavonoid metabolons: functional significance of protein-protein interactions and impact on flavonoid chemodiversity. Front Plant Sci 10:821

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of rice and Arabidopsis analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135(2):756–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DR, Ming R, Alam M, Schuler MA (2008) Comparison of cytochrome P450 genes from six plant genomes. Trop Plant Biol 1(3):216–235

    Article  CAS  Google Scholar 

  • Nishiuchi S, Watanabe K, Sato S, Takahashi H, Nakazono M (2021) Expression analysis of genes for cytochrome P450 CYP86 and glycerol-3-phosphate acyltransferase related to suberin biosynthesis in rice roots under stagnant deoxygenated conditions. Plant Root 15:19–35

    Article  CAS  Google Scholar 

  • Nix A, Paull CA, Colgrave M (2015) The flavonoid profile of pigeonpea, Cajanus cajan: a review. Springerplus 4(1):1–6

    Article  CAS  Google Scholar 

  • Nomura T, Bishop GJ (2006) Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem Rev 5(2–3):421–432

    Article  CAS  Google Scholar 

  • Nomura T, Magome H, Hanada A, Takeda-Kamiya N, Mander LN, Kamiya Y, Yamaguchi S (2013) Functional analysis of Arabidopsis CYP714A1 and CYP714A2 reveals that they are distinct gibberellin modification enzymes. Plant Cell Physiol 54(11):1837–1851

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Nomura T, Watanabe B, Ohta D, Yokota T, Miyagawa H, Sakata K, Mizutani M (2006a) Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism. Phytochemistry 67(17):1895–1906

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Watanabe B, Sakata K, Mizutani M (2006b) CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato. Biosci Biotechnol Biochem 70(9):2071–2080

    Article  CAS  PubMed  Google Scholar 

  • Oudin A, Hamdi Sd, Ouélhazi L, Chénieux JC, Rideau M, Clastre M (1999) Induction of a novel cytochrome P450 (CYP96 family) in periwinkle (Catharanthus roseus) cells induced for terpenoid indole alkaloid production. Plant Sci 149(2):105–113

    Article  CAS  Google Scholar 

  • Pan Z, Baerson SR, Wang M, Bajsa-Hirschel J, Rimando AM, Wang X, Nanayakkara ND, Noonan BP, Fromm ME, Dayan FE (2018) A cytochrome P450 CYP 71 enzyme expressed in Sorghum bicolor root hair cells participates in the biosynthesis of the benzoquinone allelochemical sorgoleone. New Phytol 218(2):616–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandian BA, Sathishraj R, Djanaguiraman M, Prasad P, Jugulam M (2020) Role of cytochrome P450 enzymes in plant stress response. Antioxidants 9(5):454

    Article  CAS  PubMed Central  Google Scholar 

  • Pierrel MA, Batard Y, Kazmaier M, Mignotte-Vieux C, Durst F, Werck-Reichhart D (1994) Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast: substrate specificity of a cinnamate hydroxylase. Eur J Biochem 224(3):835–844

    Article  CAS  PubMed  Google Scholar 

  • Pinot F, Beisson F (2011) Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. FEBS J 278(2):195–205

    Article  CAS  PubMed  Google Scholar 

  • Podust LM, Poulos TL, Waterman MR (2001) Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci 98(6):3068–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Premathilake AT, Ni J, Shen J, Bai S, Teng Y (2020) Transcriptome analysis provides new insights into the transcriptional regulation of methyl jasmonate-induced flavonoid biosynthesis in pear calli. BMC Plant Biol 20(1):1–14

    Article  CAS  Google Scholar 

  • Quinlan RF, Jaradat TT, Wurtzel ET (2007) Escherichia coli as a platform for functional expression of plant P450 carotene hydroxylases. Arch Biochem Biophys 458(2):146–157

    Article  CAS  PubMed  Google Scholar 

  • Rasool S, Mohamed R (2016) Plant cytochrome P450s: nomenclature and involvement in natural product biosynthesis. Protoplasma 253(5):1197–1209

    Article  CAS  PubMed  Google Scholar 

  • Rathinam M, Mishra P, Vasudevan M, Budhwar R, Mahato A, Prabha AL, Singh NK, Rao U, Sreevathsa R (2019) Comparative transcriptome analysis of pigeonpea, Cajanus cajan (L.) and one of its wild relatives Cajanus platycarpus (Benth.) maesen. PloS One 14(7):e0218731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rio DC, Ares M, Hannon GJ (2010) Nilsen TW (2010) purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc 6:5439

    Article  Google Scholar 

  • Rodríguez-López CE, Hong B, Paetz C, Nakamura Y, Koudounas K, Passeri V, Baldoni L, Alagna F, Calderini O, O’Connor SE (2021) Two bi-functional cytochrome P450 CYP72 enzymes from olive (Olea europaea) catalyze the oxidative C-C bond cleavage in the biosynthesis of secoxy-iridoids-flavor and quality determinants in olive oil. New Phytol 229(4):2288–2301

    Article  PubMed  CAS  Google Scholar 

  • Saxena K (2006) In: William D Dar (ed) Seed production systems in pigeonpea. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India

    Google Scholar 

  • Saxena K (2008) Genetic improvement of pigeon pea-a review. Trop Plant Biol 1(2):159–178

    Article  Google Scholar 

  • Shimada N, Akashi T, Aoki T, Ayabe SI (2000) Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci 160(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Spinello A, Ritacco I, Magistrato A (2019) The catalytic mechanism of steroidogenic cytochromes P450 from all-atom simulations: entwinement with membrane environment, redox partners, and post-transcriptional regulation. Catalysts 9(1):81

    Article  CAS  Google Scholar 

  • Sun W, Ma Z, Liu M (2020) Cytochrome P450 family: genome-wide identification provides insights into the rutin synthesis pathway in Tartary buckwheat and the improvement of agricultural product quality. Int J Biol Macromol 164:4032–4045

    Article  CAS  PubMed  Google Scholar 

  • Sundin L, Vanholme R, Geerinck J, Goeminne G, Höfer R, Kim H, Ralph J, Boerjan W (2014) Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification. Plant Physiol 166(4):1956–1971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, Sato S, Tabata S, Jørgensen K (2011) Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J 68(2):273–286

    Article  CAS  PubMed  Google Scholar 

  • Uchegbu NN, Ishiwu CN (2016) Germinated pigeon pea (Cajanus cajan): a novel diet for lowering oxidative stress and hyperglycemia. Food Sci Nutr 4(5):772–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Saxena RK, Upadhyaya HD, Khan AW, Yu Y, Kim C, Rathore A, Kim D, Kim J, An S (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49(7):1082

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi T, Hamana M, Mori A, Akiyama R, Ueno K, Osakabe K, Osakabe Y, Suzuki H, Takikawa H, Mizutani M (2019) Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis. Sci Adv 5(12):eaax9067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Hillwig ML, Wu Y, Peters RJ (2012a) CYP701A8: a rice ent-kaurene oxidase paralog diverted to more specialized diterpenoid metabolism. Plant Physiol 158(3):1418–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, Lee T-h, Jin H, Marler B, Guo H (2012b) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40(7):e49–e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YS, Xu YJ, Gao LP, Yu O, Wang XZ, He XJ, Jiang XL, Liu YJ, Xia T (2014) Functional analysis of flavonoid 3′, 5′-hydroxylase from tea plant (Camellia sinensis): critical role in the accumulation of catechins. BMC Plant Biol 14(1):1–14

    Article  Google Scholar 

  • Wang X, An F, Wang S, An Z, Wang S (2017) Orientin attenuates cerebral ischemia/reperfusion injury in rat model through the AQP-4 and TLR4/NF-κB/TNF-α signaling pathway. J Stroke Cerebrovasc Dis 26(10):2199–2214

    Article  PubMed  Google Scholar 

  • Wang M, Yuan J, Qin L, Shi W, Xia G, Liu S (2020) Ta CYP 81D5, one member in a wheat cytochrome P450 gene cluster, confers salinity tolerance via reactive oxygen species scavenging. Plant Biotechnol J 18(3):791–804

    Article  CAS  PubMed  Google Scholar 

  • Wilson C, Hui D, Nwaneri E, Wang J, Deng Q, Duseja D, Tegegne F (2012) Effects of planting dates, densities, and varieties on ecophysiology of pigeonpea in the southeastern United States. Agric Sci 3(2):147–152

    Google Scholar 

  • Xu F, Fang J, Ou S, Gao S, Zhang F, Du L, Xiao Y, Wang H, Sun X, Chu J (2015) Variations in CYP 78 A 13 coding region influence grain size and yield in rice. Plant, Cell Env 38(4):800–811

    Article  CAS  Google Scholar 

  • Xu H, Shen J, Xiao J, Chen F, Wang M (2020) Neuroprotective effect of cajaninstilbene acid against cerebral ischemia and reperfusion damages by activating AMPK/Nrf2 pathway. J Adv Res 34:199–210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Li Y, Zhang Y, Jia L, Sun L, Wang S, Xiao J, Zhan Y, Yin J (2021a) Functional identification of five CYP450 genes from birch responding to MeJA and SA in the synthesis of betulinic acid from lupitol. Ind Crops Prod 167:113513

    Article  CAS  Google Scholar 

  • Yang J, Zhang S, Li H, Wang L, Liu Y, Niu L, Yang Q, Meng D, Fu Y (2021b) Genome-wide analysis and characterization of R2R3-MYB family in pigeon pea (Cajanus cajan) and their functional identification in phenylpropanoids biosynthesis. Planta 254(4):1–21

    Article  CAS  Google Scholar 

  • Yang W, Li N, Fan Y, Dong B, Song Z, Cao H, Du T, Liu T, Qi M, Niu L, Meng D, Yang Q, Fu Y (2021c) Transcriptome analysis reveals abscisic acid enhancing drought resistance by regulating genes related to flavonoid metabolism in pigeon pea. Env Exp Bot 191:104627

    Article  CAS  Google Scholar 

  • Yasumoto S, Seki H, Shimizu Y, Fukushima EO, Muranaka T (2017) Functional characterization of CYP716 family P450 enzymes in triterpenoid biosynthesis in tomato. Front Plant Sci 8:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Yonekura-Sakakibara K, Higashi Y, Nakabayashi R (2019) The origin and evolution of plant flavonoid metabolism. Front Plant Sci 10:943

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Tehrim S, Wang L, Dossa K, Zhang X, Ke T, Liao B (2017) Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications. BMC Genom 18(1):1–21

    Article  Google Scholar 

  • Zhang DY, Zu YG, Fu YJ, Wang W, Zhang L, Luo M, Mu FS, Yao XH, Duan MH (2013) Aqueous two-phase extraction and enrichment of two main flavonoids from pigeon pea roots and the antioxidant activity. Sep Purif Technol 102:26–33

    Article  CAS  Google Scholar 

  • Zhang Y, Van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, Van Der Krol S, Leyser O (2014) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10(12):1028–1033

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Zheng QY, Sun CY, Zhang Z, Han K, Jia N (2019) Orientin improves cognition by enhancing autophagosome clearance in an Alzheimer’s mouse model. J Mol Neurosci 69(2):246–253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Program of National Natural Science Foundation of China (31930076), the Fundamental Research Funds for the Central Universities (2572020AW03), the 111 Project (B20088), and Heilongjiang Touyan Innovation Team Program (Tree Genetics and Breeding Innovation Team).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Fu.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 599 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, H., Ma, R. et al. Genome-wide transcriptome analysis and characterization of the cytochrome P450 flavonoid biosynthesis genes in pigeon pea (Cajanus cajan). Planta 255, 120 (2022). https://doi.org/10.1007/s00425-022-03896-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03896-1

Keywords

Navigation