Skip to main content
Log in

Molecular self-organization of wood lignin–carbohydrate matrix

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The analysis of the state of research on the chemical composition, functional nature and structure of the main components of the lignin–carbohydrate matrix allows considering the wood substance as a thermodynamically self-organizing nanobiocomposite system.

Abstract

Features of biosynthesis of the wood matrix main biopolymers, the formation of their functional nature and structure determine the complex hierarchical organization of cell walls. The supramolecular level of biosynthesis considers the interaction of cell wall components. On the one hand, these are questions of dynamics of cell walls synthesis and processes of self-organization that control the formation of chaotic objects of biological origin; on the other hand, it is the question of thermodynamic compatibility of plant tissue components. Various models of structural organization are currently being considered, focusing on various features (biological, chemical, structural) of wood substance. At the same time, the lignin–carbohydrate matrix is a three-component system of natural polymers: lignin—hemicelluloses—cellulose, the state of which is described by specific values of thermodynamic parameters that characterize the degree of its stability. The new approach proposed in this paper allows considering the plant lignin–carbohydrate matrix from the standpoint of physical chemistry of polymer as quasi-equilibrium, thermodynamically limited ordered system of biopolymers. Thus, the biochemical processes of synthesis and self-organization lead to the formation of a complex multicomponent system of wood substance, considered as a nanobiocomposite. This determines the need to study the applicability of the fundamental cycle "structure—functional nature—properties" from the standpoint of physical chemistry of biopolymers both for the investigation of plant objects and for the development of modern technologies for complex processing based on the principles of "green chemistry".

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anastas PT, Wagner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • Arora DS, Sharma RK (2010) Ligninolytic fungal laccases and their biotechnological applications. Appl Biochem Biotechnol 160:1760–1788

    Article  CAS  Google Scholar 

  • Atalla RH, Agarwal UP (1985) Raman microprobe evidence for lignin orientation in cell walls of native woody tissue. Science 227:636–638

    Article  Google Scholar 

  • Awano T, Takabe K, Fujita M (2002) Xylan deposition on secondary wall of Fagus crenata fiber. Protoplasma 219:106–115

    Article  CAS  PubMed  Google Scholar 

  • Balakshin M, Capanema E, Gracz H, Chang HM, Jameel H (2011) Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Balakshin M, Capanema E, Berlin A (2014) Isolation and analysis of lignin–carbohydrate complexes preparations with traditional and advanced methods: a review. Studies in natural products chemistry. Elsevier, Amsterdam

    Book  Google Scholar 

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674

    Article  CAS  PubMed  Google Scholar 

  • Barlow JW, Paul DR (1981) Polymer blends and alloys—a review of selected considerations. Polymer Eng Sci 21(15):985–996

    Article  CAS  Google Scholar 

  • Barros J, Serk H, Granlund I, Pesquet E (2015) The cell biology of lignification in higher plants. Ann Bot 7:1053–1074

    Article  CAS  Google Scholar 

  • Barros J, Escamilla-Trevino L, Song L, Rao X, Serrani-Yarce JC, Palacios MD, Engle N, Choudhury FK, Tschaplinski TJ, Venables BJ, Mittler R, Dixon RA (2019) 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nat Commun. https://doi.org/10.1038/s41467-019-10082-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann MJ, Eklo JM, Michel G, Kallas M, Teeri TT, Czjzek M, Brumer H (2007) Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell 19:1947–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjelloun-Mlayah B, Le Bigot Y, Banoub J, Delmas M (2005) The linear and regular character of straw lignin. In: 59th Australian Pulp and Paper Industry Technical Association 1:359–364 

  • Bhuiya MW, Liu CJ (2010) Engineering monolignol 4-O-methyltransferases to modulate lignin biosynthesis. J Biol Chem 285(1):277–285

    Article  CAS  PubMed  Google Scholar 

  • Blancey A, Shuty L (1977) Phenolic compounds of plant origin. Mir, Moscow

    Google Scholar 

  • Blodgett JT, Herms DA, Bonello P (2005) Effects of fertilization on red pine defense chemistry and resistance to Sphaeropsis sapinea. For Ecol Manag 208:373–382

    Article  Google Scholar 

  • Bogolitsyn K (1995) Cellulose and cellulose derivatives: physico-chemical aspects and industrial application. Woodhead Pub. Ltd.

    Google Scholar 

  • Bogolitsyn KG (2018) Modern supercritical fluid technologies for the processing of plant biocomposites: theory and practice. Pure Appl Chem 90:1679–1683. https://doi.org/10.1515/pac-2018-0404

    Article  CAS  Google Scholar 

  • Bogolitsyn KG, Aizenshtadt AM, Skrebets TE, Kosyakov DS (2005) Structural organization and physico-chemical properties of natural lignin. Green chem ser 12:73-84

  • Bogolitsyn KG, Lunin VV, Kosyakov DS et al (2010) Physical chemistry of lignin. Akademkniga, Moscow

    Google Scholar 

  • Bogolitsyn KG, Zubov IN, Gusakova MA, Krasikova AA, Chukhchin DG (2015a) Juniper wood structure under the microscope. Planta 241(5):1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Bogolitsyn KG, Krasikova AA, Gusakova MA (2015b) Supercritical fluid technologies in the chemistry of wood and its components. Rus J Phys Chem B 9(7):1065–1073. https://doi.org/10.1134/S1990793115070040

    Article  CAS  Google Scholar 

  • Bogolitsyn KG, Krasikova AA, Gusakova MA (2016) Supercritical fluid technologies for the advanced processing of plant raw materials. Rus J Phys Chem B 10(7):1048–1052. https://doi.org/10.1134/S1990793116070034

    Article  CAS  Google Scholar 

  • Bogolitsyn KG, Khviuzov SS, Gusakova MA, Pustynnaya MA, Krasikova AA (2018) The differences between acid–base and redox properties of phenolic structures of coniferous and deciduous native lignins. Wood Sci Technol 52(4):1153–1164

    Article  CAS  Google Scholar 

  • Bogolitsyn KG, Khviyuzov SS, Volkov AS, Koposov GD, Gusakova MA (2019) Broadband dielectric spectroscopy of lignin. J Phys Chem 93(2):307–312. https://doi.org/10.1134/S0044453719020055

    Article  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Ann Rev Genet 44:337–363

    Article  CAS  PubMed  Google Scholar 

  • Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    Article  CAS  Google Scholar 

  • Cheng C, Wang J, Shen D, Xue J, Guan S, Gu S, Luo KH (2017) Catalytic oxidation of lignin in solvent systems for production of renewable chemicals: a review. Polymers. https://doi.org/10.3390/polym9060240

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz CA, Barlow JB, Paul DR (1979) The basis for miscibility in polyester–polycarbonate blends. Macromolecules 12(4):726–731

    Article  CAS  Google Scholar 

  • Dautréaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    Article  CAS  Google Scholar 

  • Dambis MA, Jacobson MK, Gravitis JA, Erin’sh PP (1981) Application of the additive principle for evaluation of the solubility and compatibility of wood cell wall biopolymers. Wood Chem 4:114–115

    Google Scholar 

  • Dammstrom S, Salmen L, Gatenholm P (2009) On the interaction between cellulose and xylan, a biomimetic simulation on the hardwood cell wall. BioRes 4:3–14

    Google Scholar 

  • Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366

    Article  CAS  PubMed  Google Scholar 

  • de la Canal L, Pinedo M (2018) Extracellular vesicles: a missing component in plant cell wall remodeling. J Exp Bot 69(20):4655–4658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dean JFD, Eriksson KEL (1994) Laccase and the deposition of lignin in vascular plants. Holzforschung 48:21–33

    Article  CAS  Google Scholar 

  • Deighton N, Richardson A, Stewart D, McDougall GJ (1999) Cell-wall associated oxidases from the lignifying xylem of angiosperms and gymnosperms: monolignol oxidation. Holzforschung 53:503–510

    Article  CAS  Google Scholar 

  • Delmer DP (1999) Cellulose biosynthesis exciting times for a difficult field of study. Ann Rev Plant Physiol Plant Mol Biol 50:245–276

    Article  CAS  Google Scholar 

  • Dixon RA, Barros J (2019) Lignin biosynthesis: old roads revisited and new roads explored. Open Biol 9:190–215

    Article  Google Scholar 

  • Donaldson LA (1994) Mechanical constraints on lignin deposition during lignification. Wood Sci Technol 28:111–118

    Article  CAS  Google Scholar 

  • Donaldson LA (2001) Lignification and lignin topochemistry—an ultrastructural view. Phytochemistry 57:859–873

    Article  CAS  PubMed  Google Scholar 

  • Eijkman JF (1885) Sur les principes constituants de I’Illicium religiosum (sieb.) (Shikimi-no-Ki en Japonais). Rec Trav Chim Pays-Bas 4:32–54

    Article  Google Scholar 

  • El Kayal W, Keller G, Debayles C (2006) Regulation of tocopherol biosynthesis through transcriptional control of tocopherol cyclase during cold hardening in Eucalyptus gunnii. Physiol Plant 126:212–223

    Article  Google Scholar 

  • Elstner EF, Heupel A (1976) Formation of hydrogen peroxide by isolated cell walls from horseradish (Aromoracia lapathifolia Gilib.). Planta 130:175–180

    Article  CAS  PubMed  Google Scholar 

  • Erdmann J (1866) Ueber die concretion in den pyrus. Ann Chem Pharm 138:1–19

    Article  Google Scholar 

  • Eriksson O, Goring D, Lindgren B (1980) Structural studies on the chemical bonds between lignins and carbohydrates in spruce wood. Wood Sci Technol 14:267–279

    Article  CAS  Google Scholar 

  • Erinsh PP (1977) Structure and properties of wood as a multi-component polymer system. Wood Chem 1:8–25

    Google Scholar 

  • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol 140:603–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fengel D (1988) Wood (chemistry, ultrastructure, reactions). Lesnaya promyshlennost, Moscow

    Google Scholar 

  • Feofilova EP, Mysyakina IS (2016) Lignin: chemical structure, biodegradation, and practical application (a review). Appl Biochem Microbiol 52(6):559–569

    Article  CAS  Google Scholar 

  • Freudenberg K (1968) The constitution and biosynthesis of lignin. Molecular biology, biochemistry and biophysics. Springer, New York

    Google Scholar 

  • Freudenberg K, Reznik H, Fuchs W, Reichert M (1955) Untersuchungen uber die Entstehung des Lignins und des Holzes. Naturwissenschaften 42:29–35

    Article  CAS  Google Scholar 

  • Fromm J (2003) Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 143:77–84

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Saiki H, Harada H (1978) The secondary wall formation of compression wood tracheids. III. Cell organelles in relation to cell wall thickening and lignification. Mokuzai Gakkaishi 24:353–361

    Google Scholar 

  • Fukushima K, Terashima N (1991) Heterogeneity in formation of lignin XIV. Formation and structure of lignin in differentiating xylem of Ginkgo biloba. Holzforschung 45:87–94

    Article  CAS  Google Scholar 

  • Geldner N, Hosmani PS, Kamiya T, Danku J, Naseer S, Guerinot ML, Salt DE (2013) Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. PNAS 110(35):14498–14503

    Article  PubMed  PubMed Central  Google Scholar 

  • Giummarella N, Zhang L, Henriksson G, Lawoko M (2016) Structural features of mildly fractionated lignin carbohydrate complexes (LCC) from spruce. RSC Adv 48:42120–42131

    Article  CAS  Google Scholar 

  • Goldberg R, Le T, Catesson AM (1985) Localization and properties of cell wall enzyme activities related to the final stages of lignin biosynthesis. J Exp Bot 36:503–510

    Article  CAS  Google Scholar 

  • Gorshkova TA (2007) Plant cell wall as a dynamic system. Nauka, Moscow

    Google Scholar 

  • Gorshkova TA (2009) Biogenesis of plant fibers. Nauka, Moscow

    Google Scholar 

  • Gravitis JA, Kokorevich AG, Ozols-Kalnins VG (1989) Development of the scaling approach in the study of the supramolecular structure of lignin. Wood Chem 1:3–24

    Google Scholar 

  • Gravitis J, Vainio U, Serimaa R (2006) Do wood cell walls contain only cellulose nanostructures? Lignin nano-scale characterization using small- and ultra-small angle X-ray scattering. In: 9th European workshop on lignicellulosics and pulp 9:80–83

  • Gross GG (1977) Biosynthesis of lignin and related monomers. Rec Adv Phytochem 11:141–184

    CAS  Google Scholar 

  • Grushnikov OP, Shorygina NN (1970) The present state of the problem of lignin-carbohydrate bonds in plants tissues. Rus Chem Rev 39(8):684–694

    Article  Google Scholar 

  • Gur’ev A, Bogolitsyn K, Skrebets T (1993) Study of thermodynamic miscibility of lignin–hemicellulose system by water vapour static sorption method. Wood Chem 4:3–5

    Google Scholar 

  • Gur’ev A, Bogolitsyn K, Skrebets T (1994a) Thermodynamic miscibility in lignin–hemicellulose and hemicellulose–cellulose systems. Wood Chem 1:3–5

    Google Scholar 

  • Gur'ev A, Bogolitsyn K, Skrebets T (1994b) Wood cell wall as a natural polymer composition. Wood Chem 1:6–7

    Google Scholar 

  • Halls SC, Lewis NG (2002) Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein. Biochemistry 41(30):9455–9461

    Article  CAS  PubMed  Google Scholar 

  • Hardell HL, Leary GJ, Stoll M, Westermark U (1980) Variations in lignin structure in defined morphological parts of spruce. Svensk Papperstidn 83:44–49

    CAS  Google Scholar 

  • Harkin JM, Obst TR (1973) Lignification in trees: indication of exclusive peroxidase participation. Science 180:296–297

    Article  CAS  PubMed  Google Scholar 

  • Hausman JF, Evers D, Thiellement H, Jouve L (2000) Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments. Plant Cell Rep 19:954–960

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T (1989) Xyloglucan in the primary cell wall. Ann Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  CAS  Google Scholar 

  • Hejatko J, Paniagua C, Bilkova A, Jackson P, Dabravolski S, Didi V, Houser J, Bisceglia NG, Wimmerova M, Budínská E, Hamann T (2017) Dirigent proteins in plants—modulating cell wall metabolism during abiotic and biotic stress exposure. J Exp Bot 68(13):3287–3301

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Fosket DE, Newcomb EH (1970) Lignification during secondary wall formation in Coleus: an electron microscope study. Am J Bot 57:85–96

    Article  Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63

    Article  CAS  Google Scholar 

  • Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, Berlin

    Book  Google Scholar 

  • Hilal M, Parrado MF, Rosa M (2004) Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochem Photobiol 79:205–210

    Article  CAS  PubMed  Google Scholar 

  • Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR (2006) A synthesis of ENSO effects on drylands in Australia, North America and South America. Adv Geosci 6:69–72

    Article  Google Scholar 

  • Jacobson MK, Freimane TV, Erin’sh PP (1988) Assessment of compatibility of wood components by the enthalpy of mixing of model substances. Wood Chem 1:3–5

    Google Scholar 

  • Jin Z, Katsumata K, Lam T, Iiyma K (2006) Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous wood. Biopolymers 83(2):103–110

    Article  CAS  PubMed  Google Scholar 

  • Karmanov AP (2004) Self-organization and structural organization of lignin. Yekaterinburg, Ural Branch of RAS

  • Karmanov AP, Poleshchikov SM (2019) Modeling of the biosynthesis of lignin as a process of enzymatic dehydropolymerization monolignols. Khimiya Rastitel’nogo Syr’ya 1:63–72

    Google Scholar 

  • Karmanov AP, Ishankhodzhaeva MM, Derkacheva OY (2017) Experimental and quantum-chemical research of biosynthetic models of lignin-dehydropolymers. Izvestiya Akademii Nauk Chem Ser 4:643–647

    Google Scholar 

  • Koshijima T, Watanabe T (2003) Association between lignin and carbohydrates in wood and other plant tissues. Springer, Berlin

    Book  Google Scholar 

  • Kosikova B, Ebringerova A (1994) Lignin–carbohydrate bonds in a residual soda spruce pulp lignin. Wood Sci Technol 28:291–296

    Article  CAS  Google Scholar 

  • Lam T, Iiyma K (2000) Characteristics of senescent straw cell walls of dwarf, semidwarf, and normal strains of rice (Oryza sativa) plants. J Wood Sci 46:376–380

    Article  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin–carbohydrate complexes present in wood and in chemical pulps. Biomacromolelules 6:3467–3473

    Article  CAS  Google Scholar 

  • Lewis NG, Davin LB (2005) Dirigent phenoxy radical coupling: advances and challenges. Curr Opin Biotechnol 16:398–406

    Article  PubMed  CAS  Google Scholar 

  • Lipatov YS (1984) Colloidal chemistry of polymers. Nauka, Kiev

    Google Scholar 

  • Liu L, Dean JFD, Friedman WE, Eriksson KEL (1994) A laccase-like phenoloxidase is correlated with lignin biosynthesis in Zinnia elegans stem tissues. Plant J 6:213–224

    Article  CAS  Google Scholar 

  • Mäder M, Nessel A, Bopp M (1977) Ober die physiologische bedeutung der peroxidase isoenzym- gruppen des tabaks anhand einiger biochemischer eigenschaften II. pH-optima, Michaelis-konstanten, maximale oxidationsraten. Z Pflanzenphysiol 82:247–260

    Article  Google Scholar 

  • Mäder M, Ungemach J, Schloss P (1980) The role of peroxidase isoenzyme groups of Nicotiana tabacum in hydrogen peroxide formation. Planta 147:467–470

    Article  PubMed  Google Scholar 

  • Martın JA, Solla A, Woodward S, Gil L (2007) Detection of differential changes in lignin composition of elm xylem tissues inoculated with Ophiostoma novo-ulmi using Fourier transform-infrared spectroscopy. For Pathol 37:187–191

    Article  Google Scholar 

  • Mizutani M, Ward E, DiMaio J, Ohta D, Ryals J, Sato R (1993) Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450 (P450C4H) possessing cinnamate 4-hydroxylase activity. Biochem Biophys Res Commun 190:875–880

    Article  CAS  PubMed  Google Scholar 

  • Moerschbacher BM, Noll U, Gorrichon L, Reisener HJ (1990) Specific inhibition of lignification breaks hypersensitive resistance of wheat to stem rust. Plant Physiol 93:465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura W (1967) Studies on the biosynthesis of lignin. I. Disproof against the catalytic activity of laccase in the oxidation of coniferyl alcohol. J Biochem (jpn) 62:54–60

    Article  CAS  Google Scholar 

  • Nakshima J, Takabe K, Saiki H (1992) Artificial lignification within unlignified cell walls of Populus koreana. Mokuzai Gakkaishi 38:1136–1142

    Google Scholar 

  • Nassar MM, MacKay GDM (1984) Mechanism of thermal decomposition of lignin. Wood Fiber Sci 16(3):441–453

    CAS  Google Scholar 

  • Northcote DH (1968) The organization of the endoplasmic reticulum, the Golgi bodies and microtubules during cell division and subsequent growth. Academic Press, New York

    Book  Google Scholar 

  • Oinonen P, Zhang L, Lawoko M, Henriksson G (2015) On the formation of lignin polysaccharide networks in Norway spruce. Phytochem 111:177–184

    Article  CAS  Google Scholar 

  • Paul DR, Barlow JW (1980) Polymer blends (or alloys). J Macromol Sci 18(1):109–168

    Article  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan networks in the cell walls of higher plants. Plant J 20(6):629–639

    Article  CAS  PubMed  Google Scholar 

  • Pesquet E, Zhang B, Gorzsas A (2013) Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans. Plant Cell 25:1314–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roussel MR, Lim C (1995) Dynamic model of lignin growing in restricted spaces. Macromolecules 28:370–376

    Article  CAS  Google Scholar 

  • Saiki H (1982) The structure of domestic and important woods in Japan. Jpn. For. Technol. Assoc., Tokyo

    Google Scholar 

  • Saka S, Thomas RJ (1982) A study of lignification in loblolly pine tracheids by SEM-EDXA technique. Wood Sci Technol 16:167–179

    Article  CAS  Google Scholar 

  • Sakakibara A (1983) Chemical structure of lignin related mainly to degradation products. Recent Adv Lignin Biodegrad Res 1:12–33

    Google Scholar 

  • Salmen L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure–property relationships. J Pulp Pap Sci 24:99–103

    CAS  Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reactions. Wiley-Interscience, New York

    Google Scholar 

  • Sato Y, Sugiyama M, Komamine A, Fukuda H (1995) Separation and characterization of the isoenzymes of wall-bound peroxidase from cultured Zinnia cells during tracheary element differentiation. Planta 196:141–147

    Article  CAS  Google Scholar 

  • Schaller A, Pickel B, Pfannstiel J, Steudle A, Lehmann A, Gerken U, Pleiss J (2012) A model of dirigent proteins derived from structural and functional similarities with allene oxide cyclase and lipocalins. FEBS J 279:1980–1993

    Article  PubMed  CAS  Google Scholar 

  • Schaller A, Gasper R, Effenberger I, Kolesinski P, Terlecka B, Hofmann E (2016) Dirigent protein mode of action revealed by the crystal structure of AtDIR61. Plant Physiol 172:2165–2175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharova EI, Medvedev SS (2017) Redox reactions in the apoplast of growing cells. Plant Physiol 64(1):3–18

    Google Scholar 

  • Shi R, Wang JP, Lin YC, Li Q, Sun YH, Chen H et al (2017) Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa. Planta 245:927–938

    Article  CAS  PubMed  Google Scholar 

  • Shigematsu M (1991) Effect of the addition of lignin–carbohydrate complex on miscibility between hemicellulose and lignin. Mokuzai Gakkaishi 37(1):56–60

    Google Scholar 

  • Shigematsu M, Gomo A, Iohida Sh et al (1994a) Affinities of monolignols and saccharides determined by the solubility method. Mokuzai Gakkashi 40(3):321–327

    CAS  Google Scholar 

  • Shigematsu M, Morita M, Sakata I (1994b) Enhancement of miscibility between hemicellulose and lignin by addition of their copolymer, the lignin–carbohydrate complex. Macromol Chem 195(8):2827–2837

    Article  CAS  Google Scholar 

  • Shorygina NI, Reznikov VM, Elkin VV (1976) Reactivity of lignin. Nauka, Moscow

    Google Scholar 

  • Skrebets TE, Bogolitsyn KG (1992) The thermodynamic miscibility of the components of wood. Wood Chem 4–5:3–11

    Google Scholar 

  • Tager AA (2007) Physical chemistry of polymers. Nauchniy mir, Moscow

    Google Scholar 

  • Takabe K (1994) Ultrastructure and function of the cell. Wood molecular biology. Buneido Publ., Tokyo

    Google Scholar 

  • Takabe K, Fujita M, Harada H, Saiki H (1981) Lignification process of Japanese black pine (Pinus thunbergii Parl.) tracheids. Mokuzai Gakkaishi 27:813–820

    Google Scholar 

  • Takabe K, Fujita M, Harada H, Saiki H (1986) Lignification process in Cryptomeria (Cryptomeria japonica D. Don) tracheid: Electron microscopic observation of lignin skeleton of differentiating xylem. Res Bull Coll Exp for 43:783–788

    Google Scholar 

  • Takahashi N, Koshijima T (1988a) Molecular properties of lignin–carbohydrate complexes from beech (Fagus crenata) and pine (Pinus densiflora) woods. Wood Sci Technol 22:177–189

    Article  CAS  Google Scholar 

  • Takahashi N, Koshijima T (1988b) Ester linkages between lignin and glucuronoxylan in a lignin–carbohydrate complex from beech (Fagus crenata) wood. Wood Sci Technol 22:231–241

    Article  CAS  Google Scholar 

  • Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002) Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments. PNAS 99(13):9055–9060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasov D, Leitch M, Fatehi P (2018) Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnol Biofuels. https://doi.org/10.1186/s13068-018-1262-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Terashima N (1988) Heterogeneity in formation of lignin. XI: anautoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci Technol 22:259–270

    Article  CAS  Google Scholar 

  • Terashima N, Fukushima K, He LF, Takabe K (1993) Comprehensive model of the lignified plant cell wall. Am Soc Agron. https://doi.org/10.2134/1993.foragecellwall.c10

    Article  Google Scholar 

  • Terashima N, Atalla RH, Ralph SA, Landucci LL, Lapierre C, Monties B (1996) New preparations of lignin polymer models under conditions that approximate cell wall lignification. II. Structural characterization of the models by thioacidolysis. Holzforschung 50:9–14

    Article  CAS  Google Scholar 

  • Terashima N, Yoshida M, Hafren J, Fukushima K, Westermark U (2012) Proposed supramolecular structure of lignin in softwood tracheid compound middle lamella regions. Holzforschung 66:907–915

    Article  CAS  Google Scholar 

  • Tobimatsu Y, Schuetz M (2019) Lignin polymerization: how do plants manage the chemistry so well? Curr Opin Biotechnol 56:75–81

    Article  CAS  PubMed  Google Scholar 

  • Van Haandel MJ, Claassens MM, Van der Hount N (1999) Differential substrate behavior of phenol and aniline derivatives during conversion by HRP. Biochem Biophys Acta 1435:22–29

    PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicuña R (2000) Ligninolysis. A very peculiar microbial process. Mol Biotechnol 14:173–177

    Article  PubMed  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Wang JP, Naik PP, Chen HC, Shi R, Lin CY, Liu J et al (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell 26:894–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Feng J, Jia W, Chang S, Li S, Li Y (2015) Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels. https://doi.org/10.1186/s13068-015-0331-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JP, Tunlaya-Anukit S, Shi R, Yeh TF, Chuang L, Isik F et al (2016) A proteomic-based quantitative analysis of the relationship between monolignol biosynthetic protein abundance and lignin content using transgenic Populus trichocarpa. Recent Adv Polyphenol Res. https://doi.org/10.1002/9781118883303.ch4

    Article  Google Scholar 

  • Wang JP, Matthews ML, Williams CM, Shi R, Yang C, Tunlaya-Anukit S et al (2018) Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nat Commun. https://doi.org/10.1038/s41467-018-03863-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JP, Liu B, Sun Y, Chiang VL, Sederoff RR (2019) Enzyme–enzyme interactions in monolignol biosynthesis. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01942

    Article  PubMed  PubMed Central  Google Scholar 

  • Wardrop AB (1965) Cellular differentiation in xylem. Syracuse University Press, New York

    Google Scholar 

  • Wardrop AB, Bland DE (1959) The process of lignification in woody plants. Biochem Wood 11:92–116

    Google Scholar 

  • Watts HD, Mohamed MNA, Kubicki JD (2011) Comparison of multistandard and TMS-standard calculated NMR shifts for coniferyl alcohol and application of the multistandard method to lignin dimers. J Phys Chem B 115:1958–1970

    Article  CAS  PubMed  Google Scholar 

  • Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiting P, Goring DAI (1982) Chemical characterization of tissue fractions from the middle lamella and secondary wall of black spruce tracheids. Wood Sci Technol 16:261–267

    Article  CAS  Google Scholar 

  • Yao L, Chen C, Zheng X, Peng Z, Yang H, Xie Y (2016) Determination of lignin–carbohydrate complexes structure of wheat straw using carbon-13 isotope as a tracer. BioResources 11(3):6692–6707

    Article  CAS  Google Scholar 

  • Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008) Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficit. Plant Cell Physiol 49:226–241

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Gellerstedt G (2007) Quantitative 2D HSQC NMR determination of polymer structures by selecting suitable internal standard references. Magn Reson Chem 45:37–45

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna A. Krasikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogolitsyn, K.G., Gusakova, M.A. & Krasikova, A.A. Molecular self-organization of wood lignin–carbohydrate matrix. Planta 254, 30 (2021). https://doi.org/10.1007/s00425-021-03675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03675-4

Keywords

Navigation