Skip to main content
Log in

Manipulation of DXP pathway for andrographolide production in callus cultures of Andrographis paniculata

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Greening of in vitro callus cultures and andrographolide over-accumulation was achieved by manipulating light exposure and media composition, when the biosynthetic cascade was channeled through the DXP pathway.

Abstract

Andrographolide, the primary biologically active compound of Andrographis paniculata, is produced through coordinated action of two pathways, the classical cytosolic mevalonate pathway and the alternative plastidial non-mevalonate pathway (Deoxy-xylulose Phosphate pathway). In vitro callus cultures of A. paniculata are useful sources of production, as well as, manipulation of andrographolide, and the present study was designed to explore the strategy of pathway inhibition for its overproduction. When the cytosolic mevalonate pathway blocker, lovastatin, was applied to callus cultures of A. paniculata, andrographolide production was enhanced in comparison to untreated control. In contrast, treatment of the callus tissue with the DXP-pathway blocker, fosmidomycin, led to depletion in andrographolide production. The present study also showed that silver nitrate, a potent elicitor of andrographolide production in in vitro callus culture, when added in combination with the pathway inhibitors resulted in alterations in andrographolide production. The highest andrographolide production was obtained in callus treated with a combination of silver nitrate and lovastatin, indicating a predominant role of the plastidial DXP pathway in andrographolide biosynthesis. A positive co-relation with chlorophyll content and andrographolide production in in vitro callus cultures (untreated and treated) observed also supported the above assumption. It could be inferred from this study that greening of callus tissue through organellar organization was a potent strategy for enhancing andrographolide accumulation in callus tissues of A. paniculata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AG:

Andrographolide

IPP:

Isopentenyl diphosphate or isopentenyl pyrophosphate

DMAPP:

Dimethylallyl diphosphate

MVA:

Mevalonate

DXP:

Deoxy-xylulose phosphate

GPP:

Geranyl diphosphate

GGPP:

Geranyl geranyl diphosphate

MS:

Murashige and Skoog’s basal media

PGR:

Plant growth regulator

2,4-D:

2,4-Dichlorophenoxyacetic acid

BAP:

6-Benzylaminopurine

NAA:

Naphthalene acetic acid

References

  • Aharoni A, Jongsma MA, Kim TY, Ri MB, Giri AP, Verstappen FW, Schwab W, Bouwmeester HJ (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem Rev 5(1):49–58

    Article  CAS  Google Scholar 

  • Akowuah GA, Zhari I, Norhayati I, Mariam A (2006) HPLC and HPTLC densitometric determination of andrographolides and antioxidant potential of Andrographis paniculata. J Food Compos Anal 19:118–126

    Article  CAS  Google Scholar 

  • Bhambhani S, Karwasara VS, Dixit VK, Banerjee S (2012) Enhanced production of vasicine in Adhatoda vasica (L.) Nees. cell culture by elicitation. Acta Physiol Plant 34(4):1571–1578

    Article  CAS  Google Scholar 

  • Bindu BBV, Srinath M, Shailaja A, Giri CC (2020) Proteome analysis and differential expression by JA driven elicitation in Andrographis paniculata (Burm. f.) Wall. ex Nees using Q-TOF–LC–MS/MS. Plant Cell Tissue Organ Cult (PCTOC) 140(3):489–504

    Article  CAS  Google Scholar 

  • Biswas T, Kalra A, Mathur AK, Lal RK, Singh M, Mathur A (2016) Elicitors’ influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions. Appl Microbiol Biotechnol 100(11):4909–4922

    Article  CAS  PubMed  Google Scholar 

  • Chauhan RD, Taylor NJ (2018) Meta-topolin stimulates de novo shoot organogenesis and plant regeneration in cassava. Plant Cell Tissue Organ Cult (PCTOC) 132(1):219–224

    Article  CAS  Google Scholar 

  • Cheung HY, Cheung CS, Kong CK (2001) Determination of bioactive diterpenoids from Andrographis paniculata by micellar electrokinetic chromatography. J Chromatogr A 930(1):171–176

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y (2019) Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr 59(sup1):S17–S29

    Article  CAS  PubMed  Google Scholar 

  • Das D, Bandyopadhyay M (2015) Tissue organization is necessary for accumulaton of andrographolide in in vitro cultures of Andrographis paniculata (Burm. f.) Wall. ex Nees. J Bot Soc Bengal 69(1):27–34

    Google Scholar 

  • Das D, Bandyopadhyay M (2020) Novel approaches towards over-production of andrographolide in in vitro seedling cultures of Andrographis paniculata. S Afr J Bot 128:77–86

    Article  CAS  Google Scholar 

  • Derrick B, Ruck A, Toher D, White P (2018) Tests for equality ofvariances between two samples which contain both paired observations and independent observations. J Appl Quant 13(2):36–47

    Google Scholar 

  • Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28(5):637–646

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6(2):78–84

    Article  CAS  PubMed  Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci CMLS 61(12):1401–1426

    Article  CAS  PubMed  Google Scholar 

  • Gandi S, Rao K, Chodisetti B, Giri A (2012) Elicitation of andrographolide in the suspension cultures of Andrographis paniculata. Appl Biochem Biotechnol 168(7):1729–1738

    Article  CAS  PubMed  Google Scholar 

  • Garg A, Agrawal L, Misra RC, Sharma S, Ghosh S (2015) Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes. BMC Genomics 16(1):1–16

    Article  CAS  Google Scholar 

  • Ge X, Wu J (2005) Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci 168(2):487–491

    Article  CAS  Google Scholar 

  • Gupta S, Mishra KP, Ganju L (2017) Broad-spectrum antiviral properties of andrographolide. Arch Virol 162(3):611–623

    Article  CAS  PubMed  Google Scholar 

  • Hunter WN (2007) The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem 282(30):21573–21577

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Ali ES, Uddin SJ, Islam MA, Shaw S, Khan IN et al (2018) Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Lett 420:129–145

    Article  CAS  PubMed  Google Scholar 

  • Kai G, Liao P, Xu H, Wang J, Zhou C, Zhou W et al (2012) Molecular mechanism of elicitor-induced tanshinone accumulation in Salvia miltiorrhiza hairy root cultures. Acta Physiol Plant 34(4):1421–1433

    Article  CAS  Google Scholar 

  • Kataky A, Handique PJ (2010) A brief overview on Andrographis paniculata (Burm. f) Nees., a high valued medicinal plant: Boon over synthetic drugs. Asian J Sci Technol 6:113–118

    Google Scholar 

  • Kittipongpatana N, Davis DL, Porter JR (2002) Methyl jasmonate increases the production of valepotriates by transformed root cultures of Valerianella locusta. Plant Cell Tissue Organ Cult 71:65–75

    Article  CAS  Google Scholar 

  • Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3: a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12(2):8–9

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28(6):785–789

    Article  CAS  PubMed  Google Scholar 

  • Luthra R, Luthra PM, Kumar S (1999) Redefined role of mevalonate–isoprenoid pathway in terpenoid biosynthesis in higher plants. Curr Sci 76(2):133–135

    CAS  Google Scholar 

  • Mahendran D, Geetha N, Venkatachalam P (2019) Role of silver nitrate and silver nanoparticles on tissue culture medium and enhanced the plant growth and development. In vitro plant breeding towards novel agronomic traits. Springer, Singapore, pp 59–74

    Chapter  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505(2):131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee C, Samanta T, Mitra A (2016) Redirection of metabolite biosynthesis from hydroxybenzoates to volatile terpenoids in green hairy roots of Daucus carota. Planta 243(2):305–320

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nyeem MAB, Mannan MA, Nuruzzaman M, Kamrujjaman KM, Das SK (2017) Indigenous king of bitter (Andrographis paniculata): a review. J Med Plants 5(2):318–324

    Google Scholar 

  • Palazón J, Cusidó RM, Bonfill M, Morales C, Piñol MT (2003) Inhibition of paclitaxel and baccatin III accumulation by mevinolin and fosmidomycin in suspension cultures of Taxus baccata. J Biotechnol 101(2):157–163

    Article  PubMed  Google Scholar 

  • Park WT, Arasu MV, Al-Dhabi NA, Yeo SK, Jeon J, Park JS et al (2016) Yeast extract and silver nitrate induce the expression of phenylpropanoid biosynthetic genes and induce the accumulation of rosmarinic acid in Agastache rugosa cell culture. Molecules 21(4):426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pholphana N, Rangkadilok N, Thongnest S, Ruchirawat S, Ruchirawat M, Satayavivad J (2004) Determination and variation of three active diterpenoids in Andrographis paniculata (Burm. F.) Nees. Phytochem Anal 15(6):365–371

    Article  CAS  PubMed  Google Scholar 

  • Purkayastha J, Sugla T, Paul A, Solleti S, Sahoo L (2008) Rapid in vitro multiplication and plant regeneration from nodal explants of Andrographis paniculata: a valuable medicinal plant. In Vitro Cell Dev Plants 44(5):442–447

    Article  CAS  Google Scholar 

  • Retno SARI, Widyawaruyanti A, Anindita FBT, Astuti SK, Setyawan D (2018) Development of andrographolide-carboxymethyl chitosan nanoparticles: characterization, in vitro release and in vivo antimalarial activity study. Turkish J Pharm Sci 15(2):136

    Article  CAS  Google Scholar 

  • Rodrı́guez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130(3):1079–1089

    Article  PubMed  CAS  Google Scholar 

  • Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118(11):2564–2566

    Article  CAS  Google Scholar 

  • Shahzad A, Sharma S, Parveen S, Saeed T, Shaheen A, Akhtar R, Yadav V, Upadhyay A, Ahmad Z (2017) Historical perspective and basic principles of plant tissue culture. In: Plant biotechnology: principles and applications. Springer, Singapore, pp 1–36

    Google Scholar 

  • Sharma SN, Jha Z, Sinha RK, Geda AK (2015) Jasmonate-induced biosynthesis of andrographolide in Andrographis paniculata. Physiol Plant 153(2):221–229

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Pandey P, Ghosh S, Banerjee S (2018) Anti-cancer labdane diterpenoids from adventitious roots of Andrographis paniculata: augmentation of production prospect endowed with pathway gene expression. Protoplasma 255(5):1387–1400

    Article  CAS  PubMed  Google Scholar 

  • Singh T, Yadav R, Agrawal V (2020) Effective protocol for isolation and marked enhancement of psoralen, daidzein and genistein in the cotyledon callus cultures of Cullen corylifolium (L.) Medik. Ind Crops Prod 143:111905

    Article  CAS  Google Scholar 

  • Sinha RK, Sharma SN, Verma SS, Zha J (2018) Effects of lovastin, fosmidomycin and methyl jasmonate on andrographolide biosynthesis in the Andrographis paniculata. Acta Physiol Plant 40(9):165

    Article  CAS  Google Scholar 

  • Srivastava N, Akhila A (2010) Biosynthesis of andrographolide in Andrographis paniculata. Phytochemistry 71(11):1298–1304

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Misra H, Verma RK, Gupta MM (2004) Chemical fingerprinting of Andrographis paniculata using HPLC, HPTLC and densitometry. Phytochem Anal 15:280–285

    Article  CAS  PubMed  Google Scholar 

  • Talei D, Yusop MK, Kadir MA, Valdiani A, Abdullah MP (2012) Response of King of Bitters ('Andrographis paniculata'Nees.) seedlings to salinity stress beyond the salt tolerance threshold. Aust J Crop Sci 6(6):1059–1067

    CAS  Google Scholar 

  • Tan WD, Liao W, Zhou S, Wong WF (2017) Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochem Pharmacol 139:71–81

    Article  CAS  PubMed  Google Scholar 

  • Thilip C, Mehaboob VM, Varutharaju K, Faizal K, Raja P, Aslam A, Shajahan A (2019) Elicitation of withaferin-A in hairy root culture of Withania somnifera (L.) Dunal using natural polysaccharides. Biologia 74(8):961–968

    Article  CAS  Google Scholar 

  • Titova MV, Khandy MT, Konstantinova SV, Kulichenko IE, Sukhanova ES, Kochkin DV, Nosov AM (2016) Effect of inhibitors of two isoprenoid biosynthetic pathways on physiological and biosynthetic characteristics of Dioscorea deltoidea cell suspension culture. Russ J Plant Physl 63(6):894–900

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Vakil MM, Mendhulkar VD (2013) Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. Bot Stud 54(1):1–8

    Article  CAS  Google Scholar 

  • Wen L, Xia N, Chen X, Li Y, Hong Y, Liu Y, Wang Z (2014) Activity of antibacterial, antiviral, anti-inflammatory in compounds andrographolide salt. Eur J Pharmacol 740:421–427

    Article  CAS  PubMed  Google Scholar 

  • Wink M, Hartmann T (1980) Production of quinolizidine alkaloids by photomixotrophic cell suspension cultures: Biochemical and biogenetic aspects. Planta Med 40:149–155

    Article  CAS  Google Scholar 

  • Wintachai P, Kaur P, Lee RCH, Ramphan S, Kuadkitkan A, Wikan N et al (2015) Activity of andrographolide against chikungunya virus infection. Sci Rep 5(14179):1–14

    Google Scholar 

  • Woodward AJ, Bennett IJ (2005) The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell Tissue Organ Cult 82(2):189–200

    Article  CAS  Google Scholar 

  • Yao W, An T, Xu Z, Zhang L, Gao H, Sun W et al (2020) Genomic-wide identification and expression analysis of AP2/ERF transcription factors related to andrographolide biosynthesis in Andrographis paniculata. Ind Crops Prod 157:112878

    Article  CAS  Google Scholar 

  • Zafar N, Mujib A, Ali M, Tonk D, Gulzar B (2017) Aluminum chloride elicitation (amendment) improves callus biomass growth and reserpine yield in Rauvolfia serpentina leaf callus. Plant Cell Tissue Organ Cult (PCTOC) 130(2):357–368

    Article  CAS  Google Scholar 

  • Zhao J, Zhu WH, Hu Q (2001) Effects of light and plant growth regulators on the biosynthesis of vindoline and other indole alkaloids in Catharanthus roseus callus cultures. Plant Growth Regul 33(1):43–49

    Article  CAS  Google Scholar 

  • Zhao S, Wang L, Liu L, Liang Y, Sun Y, Wu J (2014) Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis. Plant Cell Rep 33(3):393–400

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Wang DX, Zhang W, Liao XQ, Guan X, Bo H et al (2013) Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB. PLoS ONE 8(2):e56407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Head of the Department of Botany, Centre of Advanced Study, University of Calcutta, Programme Co-ordinator, CAS Phase VII, Department of Botany, University of Calcutta, for providing all the facilities and University Grants Commission–Basic Scientific Research (UGC–BSR) for financial support. The authors would like to acknowledge Professor Sumita Jha and Dr. Debabrata Maity for allowing use of their stereo microscope facility at the Department of Botany, University of Calcutta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maumita Bandyopadhyay.

Ethics declarations

Conflict of interest

The authors would like to declare that there is absolutely no conflict of interest.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, D., Bandyopadhyay, M. Manipulation of DXP pathway for andrographolide production in callus cultures of Andrographis paniculata. Planta 254, 23 (2021). https://doi.org/10.1007/s00425-021-03674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03674-5

Keywords

Navigation