Skip to main content
Log in

Influence of domestication on specialized metabolic pathways in fruit crops

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding.

Abstract

Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified from Zhou et al. (2016). KEGG database was used to draft the pathway map for the cucurbitacin biosynthetic pathway differentiation in the wild and the domesticated cucurbits (https://www.genome.jp/kegg/). Metabolite structures were drawn using ChemDraw v16.0

Fig. 3
Fig. 4
Fig. 5

modified from Yu et al. (2015). Plant species names: Vvin, Vitis vinifera; Tcac, Theobroma cacao; Slyc, Solanum lycopersicum; Pmum, Prunus mume; Mdom, Malus domestica Borkh.; Fves, Fragaria vesca; Csat, Cucumis sativus; Csin, Citrus sinensis; Clan, Citrullus lanatus; Cpap, Carica papaya. Data for tandem genes and clusters, specifically to the fruit crop plants only, were extracted from the integrated database of “PTGBase” (Yu et al. 2015)

Fig. 6

Similar content being viewed by others

References

  • Abbo S, Lev-Yadun S, Gopher A (2014) The “human mind” as a common denominator in plant domestication. J Exp Bot 65(8):1917–1920

    CAS  PubMed  Google Scholar 

  • Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, SchwabW BHJ (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16(11):3110–3131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alseekh S, Tong H, Scossa F, Brotman Y, Vigroux F, Tohge T, Ofner I, Zamir D, Nikoloski Z, Fernie AR (2017) Canalization of tomato fruit metabolism. Plant Cell 29(11):2753–2765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100(5):1085–1094

    PubMed  PubMed Central  Google Scholar 

  • Balkema-Boomstra AG, Zijlstra S, Verstappen FWA, Inggamer H, Mercke PE, Jongsma MA, Bouwmeester HJ (2003) Role of Cucurbitacin C in resistance to spider mite (Tetranychus urticae) in cucumber (Cucumis sativus L.). J Chem Ecol 29:225–235

    CAS  PubMed  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324(5928):746–748

    CAS  PubMed  Google Scholar 

  • Blin K, Medema MH, Kottmann R, Lee SY, Weber T (2017) The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 45(D1):D555–D559

    CAS  PubMed  Google Scholar 

  • Blin K, Kim HU, Medema MH, Weber T (2019) Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform 20(4):1103–1113

    CAS  PubMed  Google Scholar 

  • Boycheva S, Daviet L, Wolfender JL, Fitzpatrick TB (2014) The rise of operon-like gene clusters in plants. Trends Plant Sci 19(7):447–459

    CAS  PubMed  Google Scholar 

  • Cao K, Zheng Z, Wang L, Liu X, Zhu G, Fang W, Cheng S, Zheng P, Chen C, Wang X, Xie M, Zhong X, Wang X, Zhao P, Bian C, Zhu Y, Zhang J, Ma G, Cheng C, Li Y, Hao F, Li Y, Huang G, Li Y, Li H, Guo J, Xu X, Wang J (2014) Comparative population genomics reveals the domestication history of peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol 15:415

    PubMed  PubMed Central  Google Scholar 

  • Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883–1897

    CAS  PubMed  Google Scholar 

  • Carrington Y, Guo J, Le CH, Fillo A, Kwon J, Tran LT, Ehlting J (2018) Evolution of a secondary metabolic pathway from primary metabolism: shikimate and quinate biosynthesis in plants. Plant J 95:823–833

    CAS  Google Scholar 

  • Castillo DA, Kolesnikova MD, Matsuda SP (2013) An effective strategy for exploring unknown metabolic pathways by genome mining. J Am Chem Soc 135(15):5885–5894

    CAS  PubMed  Google Scholar 

  • Chae L, Kim T, Nilo-Poyanco R, Rhee SY (2014) Genomic signatures of specialized metabolism in plants. Science 344(6183):510–513

    CAS  PubMed  Google Scholar 

  • Chavali AK, Rhee SY (2018) Bioinformatics tools for the identification of gene clusters that biosynthesize specialized metabolites. Brief Bioinform 19(5):1022–1034

    CAS  PubMed  Google Scholar 

  • Chen X (2015) Bitter but tasty cucumber. Nat Sci Rev 2(2):129–130

    Google Scholar 

  • Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX (2005) Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep 22:386–399

    CAS  PubMed  Google Scholar 

  • Chu HY, Wegel E, Osbourn A (2011) From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. Plant J 66(1):66–79

    CAS  PubMed  Google Scholar 

  • Darbani B, Motawia MS, Olsen CE, Nour-Eldin HH, Møller BL, Rook F (2016) The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter. Sci Rep 6:37079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande AB, Chidley HG, Oak PS, Pujari KH, Giri AP, Gupta VS (2016) Data on changes in the fatty acid composition during fruit development and ripening of three mango cultivars (Alphonso, Pairi and Kent) varying in lactone content. Data Brief 9:480

    PubMed  PubMed Central  Google Scholar 

  • Deshpande AB, Chidley HG, Oak PS, Pujari KH, GiriAP GVS (2017) Isolation and characterization of 9-lipoxygenase and epoxide hydrolase 2 genes: Insight into lactone biosynthesis in mango fruit (Mangifera indica L.). Phytochemistry 138:65–75

    CAS  PubMed  Google Scholar 

  • Dutartre L, Hilliou F, Feyereisen R (2012) Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster. BMC Evol Biol 12:64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29(1):51–63

    PubMed  Google Scholar 

  • Emanuelli F, Battilana J, Costantini L, Le Cunff L, Jean-Michel Boursiquot JM, This P, Grando MS (2010) A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.). BMC Plant Biol 10:241

    PubMed  PubMed Central  Google Scholar 

  • Farinati S, RasoriA VS, Bonghi C (2017) Rosaceae fruit development, ripening and post-harvest: an epigenetic perspective. Front Plant Sci 8:1247

    PubMed  PubMed Central  Google Scholar 

  • Field B, Osbourn A (2008) Metabolic diversification-independent assembly of operon-like gene clusters in different plants. Science 320:543–547

    CAS  PubMed  Google Scholar 

  • Field B, Osbourn A (2012) Order in the playground: formation of plant gene clusters in dynamic chromosomal regions. Mob Genet Elem 2(1):46–50

    Google Scholar 

  • Field B, Fiston-Lavier AS, Kemen A, Geisler K, Quesneville H, Osbourn AE (2011) Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proc Natl Acad Sci 108(38):16116–16121

    CAS  PubMed  Google Scholar 

  • Fondi M, Emiliani G, Fani R (2009) Origin and evolution of operons and metabolic pathways. Res Microbiol 160(7):502–512

    CAS  PubMed  Google Scholar 

  • Fraenkel GS (1959) The raison d’être of secondary plant substances. Science 129:1466–1470

    CAS  PubMed  Google Scholar 

  • Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277(5326):696–699

    CAS  PubMed  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgression. Science 305:1786–1789

    CAS  PubMed  Google Scholar 

  • Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman MD, Burzynski-Chang AE, Fish LT, Stromberg AK, Sacks LG, Thannhauser WT, Foolad RM, Diez M, Blanca J, Canizares J, Xu Y, Knaap E, Huang S, Klee JH, Giovannoni JJ, Fei Z (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51(1044):1051

    Google Scholar 

  • Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genom 9(2):103–110

    CAS  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, WangJ LY, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    CAS  PubMed  Google Scholar 

  • Ho SD, Sung JE, Min LG, Hwan LC (2018) Distinguishing six edible berries based on metabolic pathway and bioactivity correlations by non-targeted metabolite profiling. Front Plant Sci 9:1462

    Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WuZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41(12):1275–1281

    CAS  PubMed  Google Scholar 

  • Huang S, Ding J, Deng D, Tang W, Sun H, Liu D, Zhang L, Niu X, Zhang X, Meng M, Yu J, Liu J, HanY SW, Zhang D, Cao S, Wei Z, Cui Y, Xia Y, Zeng H, Bao K, Lin L, Min Y, Zhang H, Miao M, Tang X, Zhu Y, Sui Y, Li G, Sun H, Yue J, Sun J, Liu F, Zhou L, Lei L, Zheng X, Liu M, HuangL SJ, Xu C, Li J, Ye K, Zhong S, Lu BR, He G, Xiao F, Wang HL, Zheng H, Fei Z, Liu Y (2013) Draft genome of the kiwifruit Actinidia chinensis. Nat Commun 4:2640

    PubMed  PubMed Central  Google Scholar 

  • Hurles M (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol 2(7):E206

    PubMed  PubMed Central  Google Scholar 

  • Illa E, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Li X, Moing A, LambertP DLL, Gao Z, Poëssel JL, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W (2011) Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed 28(4):667–682

    Google Scholar 

  • Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, CardenasPD BSE, Unger T, Malitsky S, Finkers R, Tikunov Y, Bovy A, Chikate Y, Singh P, Rogachev I, Beekwilder J, Giri AP, Aharoni A (2013) Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science 341(6142):175–179

    CAS  PubMed  Google Scholar 

  • Jacobowitz JR, Weng J (2020) Exploring uncharted territories of plant specialized metabolism in the postgenomic era. Annu Rev Plant Biol 71:1

    Google Scholar 

  • Johns T, Alonso JG (1990) Glycoalkaloids change during the domestication of the potato, Solanum section petota. Euphytica 50:203–210

    CAS  Google Scholar 

  • Jonczyk R, Schmidt H, Osterrieder A, Fiesselmann A, Schullehner K, Haslbeck M, Sicker D, Hofmann D, Yalpani N, Simmons C, Frey M, Gierl A (2008) Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: characterization of Bx6 and Bx7. Plant Physiol 146(3):1053–1063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen K, Morant AV, Morant M, JensenNB OCE, Kannangara R, Motawia MS, Moller BL, Bak S (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol 155(1):282–292

    PubMed  Google Scholar 

  • Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM, Goodenough PW, Johnson CB (2007) Rational conversion of substrate and product specificity in monoterpene synthase: Structural insights into the evolution of terpene synthase function. Plant Cell 19(6):1994–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik U, Aeri V, Mir SR (2015) Cucurbitacins—an insight into medicinal leads from nature. Pharmacogn Rev 9(17):12–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Buell CR (2015) A revolution in plant metabolism: genome-enabled pathway discovery. Plant Physiol 169(3):1532–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JK, Sorensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46(3):270–278

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Osbourn A (2012) Making new molecules—evolution of pathways for novel metabolites in plants. Curr Opin Plant Biol 15(4):415–423

    CAS  PubMed  Google Scholar 

  • Krokida A, Delis C, Geisler K, Garagounis C, Tsikou D, Pena-Rodriguez LM, Katsarou D, Field B, Osbourn AE, Papadopoulou KK (2013) A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis. New Phytol 200(3):675–690

    CAS  PubMed  Google Scholar 

  • Kulkarni RS, Chidley HG, Pujari KH, Giri AP, Gupta VS (2012) Geographic variation in the flavour volatiles of Alphonso mango. Food Chem 130:58–66

    CAS  Google Scholar 

  • Kulkarni R, Chidley H, Deshpande A, Schmidt A, Pujari K, Giri A, Gershenzon J, GuptaV, (2013) An oxidoreductase from ‘Alphonso’ mango catalyzing biosynthesis of furaneol and reduction of reactive carbonyls. Springer Plus 2:494–502

    PubMed  Google Scholar 

  • Lang Z, Wang Y, Tang K, Tang D, Datsenka T, Cheng J, Zhang Y, Handa AK, Zhu J (2017) Active DNA demethylation in fruit ripening. Proc Natl Acad Sci 114(22):E4511–E4519

    CAS  PubMed  Google Scholar 

  • Lisch D (2013) How important are transposons for plant evolution? Nat Rev Genet 14:49–61

    CAS  Google Scholar 

  • Maeda HA (2019) Evolutionary diversification of primary metabolism and its contribution to plant chemical diversity. Front Plant Sci 10:881

    PubMed  PubMed Central  Google Scholar 

  • Matsuba Y, Nguyen TT, Wiegert K, Falara V, Gonzales-Vigil E, Leong B, Schafer P, Kudrna D, Wing RA, Bolger AM, Usadel B, Tissier A, Fernie AR, Barry CS, Pichersky E (2013) Evolution of a complex locus for terpene biosynthesis in solanum. Plant Cell 25(6):2022–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui K, Ujita C, Fujimoto S, Wilkinson J, Hiatt B, Knauf V, Kajiwara T, Feussner I (2000) Fatty acid 9- and 13-hydroperoxide lyases from cucumber. FEBS Lett 481(2):183–188

    CAS  PubMed  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HP (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    PubMed  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome. https://doi.org/10.3835/plantgenome2013.03.0001in

    Article  Google Scholar 

  • Michelmore RW, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8(11):1113–1130

    CAS  PubMed  Google Scholar 

  • Morata J, Puigdomenech P (2017) Variability among Cucurbitaceae species (melon, cucumber and watermelon) in a genomic region containing a cluster of NBS-LRR genes. BMC Genom 18(1):138

    Google Scholar 

  • Mugford ST, Louveau T, Melton R, Qi X, Bakht S, Hill L, Tsurushima T, Honkanen S, Rosser SJ, Lomonossoff GP, Osbourn A (2013) Modularity of plant metabolic gene clusters: a trio of linked genes that are collectively required for acylation of triterpenes in oat. Plant Cell 25(3):1078–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murat F, Armero A, Pont C, Klopp C, Salse J (2017) Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet 49(4):490–496

    CAS  PubMed  Google Scholar 

  • Niederhuth CE, Schmitz RJ (2017) Putting DNA methylation in context: from genomes to gene expression in plants. Biochim Biophys Acta 1860:149–156

    CAS  Google Scholar 

  • Nutzmann HW, Osbourn A (2014) Gene clustering in plant specialized metabolism. Curr Opin Biotechnol 26:91–99

    CAS  PubMed  Google Scholar 

  • Nutzmann HW, Huang A, Osbourn A (2016) Plant metabolic clusters-from genetics to genomics. New Phytol 211(3):771–789

    PubMed  PubMed Central  Google Scholar 

  • Osbourn A (2010a) Gene clusters for secondary metabolic pathways: an emerging theme in plant biology. Plant Physiol 154(2):531–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osbourn A (2010b) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26(10):449–457

    CAS  PubMed  Google Scholar 

  • Osbourn A, Papadopoulou KK, Qi X, Field B, Wegel E (2012) Finding and analyzing plant metabolic gene clusters. Methods Enzymol 517:113–138

    CAS  PubMed  Google Scholar 

  • Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171(4):2294–2316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit SS, Kulkarni RS, Chidley HG, Giri AP, Pujari KH, Kollner TG, Degenhardt J, Gershenzon J, Gupta VS (2009) Changes in volatile composition during fruit development and ripening of ‘Alphonso’ mango. J Sci Food Agr 89:2071–2081

    CAS  Google Scholar 

  • Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol 62:549–566

    CAS  PubMed  Google Scholar 

  • Poshyvailo L, von Lieres E, Kondrat S (2017) Does metabolite channeling accelerate enzyme-catalyzed cascade reactions? PLoS ONE 12(2):e0172673

    PubMed  PubMed Central  Google Scholar 

  • Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A (2004) A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci 101(21):8233–8238

    CAS  PubMed  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, Gonzalez-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, ChenZ FY, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernandez S, Leyva-Gonzalez MA, Xiong Z, He X, Bai L, Tan S, TangX LD, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, YinY YuJ, HuK ZZ (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci 111(14):5135–5140

    CAS  PubMed  Google Scholar 

  • Ren R, Wang H, Guo C, Zhang N, Zeng L, Chen Y, Ma H, Qi J (2018) Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant 11(3):414–428

    CAS  PubMed  Google Scholar 

  • Sadali NM, Sowden RG, Ling Q, Jarvis RP (2019) Differentiation of chromoplasts and other plastids in plants. Plant Cell Rep 38:803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu KK, Chattopadhyay D (2017) Genome-wide sequence variations between wild and cultivated tomato species revisited by whole genome sequence mapping. BMC Genom 18(1):430

    Google Scholar 

  • Salehi B, Sharifi-Rad J, Capanoglu E, Adrar N, Catalkaya G, Shaheen S, Jaffer M, Giri L, Suyal R, Jugran AK, Calina D, Oana Docea A, Kamiloglu S, Kregiel D, Antolak H, Pawlikowska E, Sen S, Acharya K, Bashiry M, Selamoglu Z, Martorell M, Sharopov F, Martins N, Namiesnik J, Cho WC (2019) Cucurbita plants: from farm to industry. Appl Sci 9:3387

    CAS  Google Scholar 

  • Salman-Minkov A, Sabath N, Mayrose I (2016) Whole-genome duplication as a key factor in crop domestication. Nat Plants 2:16115

    CAS  PubMed  Google Scholar 

  • Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203(3):229–248

    CAS  PubMed  Google Scholar 

  • Schlapfer P, Zhang P, Wang C, Kim T, Banf M, Chae L, Dreher K, Chavali AK, Nilo-Poyanco R, Bernard T, KahnD RSY (2017) Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants. Plant Physiol 173(4):2041–2059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scossa F, Benina M, Alseekh S, Zhang Y, Fernie AR (2018) The integration of metabolomics and next-generation sequencing data to elucidate the pathways of natural product metabolism in medicinal plants. Planta Med 84(12–13):855–873

    CAS  PubMed  Google Scholar 

  • Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J, Zhou Q, Wang S, Gu W, Liu M, Ren J, Gu X, Zhang S, Wang Y, Yasukawa K, Bouwmeester HJ, Qi X, Zhang Z, Lucas WJ, Huang S (2014) Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346(6213):1084–1088

    CAS  PubMed  Google Scholar 

  • Shimura K, Okada A, Okada K, Jikumaru Y, Ko KW, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N (2007) Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem 282(47):34013–34018

    CAS  PubMed  Google Scholar 

  • Stewart C Jr, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in C. chinense via the Pun1 locus. J Exp Bot 58(5):979–991

    CAS  PubMed  Google Scholar 

  • Tadmor Y, King S, Levi A, Davis A, Meir A, Wasserman B, Hirschberg J, Lewinsohn E (2005) Comparative fruit colouration in watermelon and tomato. Food Res Intern 38(8):837–841

    CAS  Google Scholar 

  • Takos AM, Knudsen C, Lai D, Kannangara R, Mikkelsen L, Motawia MS, Olsen CE, SatoS TS, Jorgensen K, Moller BL, Rook F (2011) Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. Plant J 68(2):273–286

    CAS  PubMed  Google Scholar 

  • Tang H, Sezen U, Paterson AH (2010) Domestication and plant genomes. Curr Opin Plant Biol 13(2):160–166

    CAS  PubMed  Google Scholar 

  • Thorogood CJ, Bauer U, Hiscock SJ (2018) Convergent and divergent evolution in carnivorous pitcher plant traps. New Phytol 217(3):1035–1041

    PubMed  Google Scholar 

  • Topfer N, Fuchs LM, Aharoni A (2017) The PhytoClust tool for metabolic gene clusters discovery in plant genomes. Nucleic Acids Res 45(12):7049–7063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vallarino JG, de Abreu E, Lima F, Soria C, Tong H, Pott DM, Willmitzer L, Fernie AR, Nikoloski Z, Osorio S (2018) Genetic diversity of strawberry germplasm using metabolomic biomarkers. Sci Rep 8:14386

    PubMed  PubMed Central  Google Scholar 

  • Watkins J, Tutt A, Grigoriadis A (2016) Tandem duplications contribute to not one but two distinct phenotypes. Proc Natl Acad Sci 113(36):E5257-5258

    CAS  PubMed  Google Scholar 

  • Wegel E, Koumproglou R, Shaw P, Osbourn A (2009) Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. Plant Cell 21(12):3926–3936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weng JK, Li Y, Mo H, Chapple C (2012) Assembly of an evolutionarily new pathway for alpha-pyrone biosynthesis in Arabidopsis. Science 337(6097):960–964

    CAS  PubMed  Google Scholar 

  • Widhalm JR, Rhodes D (2016) Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Hortic Res 3:16046

    PubMed  PubMed Central  Google Scholar 

  • Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE, Walker C, BowserTA GIA (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336(6089):1704–1708

    CAS  PubMed  Google Scholar 

  • Wisecaver JH, Slot JC, Rokas A (2014) The evolution of fungal metabolic pathways. PLoS Genet 10(12):e1004816

    PubMed  PubMed Central  Google Scholar 

  • Wu Y, Hillwig ML, Wang Q, Peters RJ (2011) Parsing a multifunctional biosynthetic gene cluster from rice: biochemical characterization of CYP71Z6 & 7. FEBS Lett 585:3446–3451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xin Q, Hao Y, Leiting L, Runze W, Juyou W, Jun W, Shaoling Z (2018) Different modes of gene duplication show divergent evolutionary patterns and contribute differently to the expansion of gene families involved in important fruit traits in pear (Pyrus bretschneideri). Front Plant Sci 9:161

    Google Scholar 

  • Yang Z, Li G, Tieman D, Zhu G (2019) Genomics approaches to domestication studies of horticultural crops. Horticult Plant J 5(6):240–246

    Google Scholar 

  • Yu J, Ke T, Tehrim S, Sun F, Liao B, Hua W (2015) PTGBase: an integrated database to study tandem duplicated genes in plants. Database. https://doi.org/10.1093/database/bav017

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu N, Nutzmann HW, MacDonald JT, Moore B, Field B, Berriri S, Trick M, Rosser SJ, Kumar SV, Freemont PS, Osbourn A (2016) Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 44(5):2255–2265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhao G, Ding X (2011) Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination. Sci Rep 1:141

    PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, YuanZ FG, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J (2012) The genome of Prunus mume. Nat Commun 3:1318

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, Hu J, Han X, Li J, Gao Y, Richards CM, Zhang C, Tian Y, Liu G, Gul H, Wang D, Tian Y, Yang C, Meng M, Yuan G, Kang G, Wu Y, Wang K, Zhang H, Wang D, Cong P (2019) A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nat Commun 10:1494

    PubMed  PubMed Central  Google Scholar 

  • Zhao S, Kumar R, Sakai A, Vetting MW, Wood BM, Brown S, Bonanno JB, Hillerich BS, Seidel RD, Babbitt PC, Almo SC, Sweedler JV, Gerlt JA, Cronan JE, Jacobson MP (2013) Discovery of new enzymes and metabolic pathways by using structure and genome context. Nature 502(7473):698–702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Ma Y, Zeng J, Duan L, Xue X, Wang H, Lin T, Liu Z, Zeng K, Zhong Y, Zhang S, Hu Q, Liu M, Zhang H, Reed J, Moses T, Liu X, Huang P, Qing Z, Liu X, Tu P, Kuang H, Zhang Z, Osbourn A, RoDK SY, Huang S (2016) Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat Plants 2:16183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Massennet M, Sanjak JS, Cantu D, Gant BS (2017) Evolutionary genomics of grape (Vitis vinifera ssp. Vinifera) domestication. Proc Natl Acad Sci USA 114:11715–11720

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MSD and PSO are thankful to Council of Scientific and Industrial Research (CSIR, New Delhi) for research fellowship; and MSD acknowledge the Academy of Scientific and Innovative Research (AcSIR), India for enrollment in the Ph.D. program. This research was funded by the CSIR New Delhi, India under the project CSC0133 (FUNHEALTH) to CSIR-National Chemical Laboratory, Pune.

Author information

Authors and Affiliations

Authors

Contributions

MSD, BBD and APG conceptualized the idea and subsequently framed the review outline. MSD prepared the figures with inputs from APK, BBD and DS. MSD, BBD, VSG and APG wrote the initial drafts of the manuscript with inputs from DS, APK and PSO. All authors contributed in revising and editing the manuscript drafts; and subsequently approved the final manuscript.

Corresponding authors

Correspondence to Bhushan B. Dholakia or Ashok P. Giri.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, M.S., Dholakia, B.B., Kulkarni, A.P. et al. Influence of domestication on specialized metabolic pathways in fruit crops. Planta 253, 61 (2021). https://doi.org/10.1007/s00425-020-03554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03554-4

Keywords

Navigation