Skip to main content

Advertisement

Log in

Synergistic consortium of beneficial microorganisms in rice rhizosphere promotes host defense to blight-causing Xanthomonas oryzae pv. oryzae

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Rice plants primed with beneficial microbes Bacillus amyloliquefaciens and Aspergillus spinulosporus with biocontrol potential against Xanthomonas oryzae pv. oryzae, provided protection from disease by reprogramming host defence response under pathogen challenge.

Abstract

Plant–beneficial microbe interactions taking place in the rhizosphere are widely used for growth promotion and mitigation of biotic stresses in plants. The present study aims to evaluate the defense network induced by beneficial microorganisms in the rice rhizosphere, and the three-way interaction involved upon inoculation with dreadful bacteria Xanthomonas oryzae pv. oryzae (Xoo). Differential expression of defense-related enzymes, proteins, and genes in rice variety Swarna primed with a microbial consortium of Bacillus amyloliquefaciens and Aspergillus spinulosporus were quantified in the presence and absence of Xoo. The time-based expression profile alterations in leaves under the five distinct treatments “(unprimed unchallenged, unprimed Xoo challenged, B. amyloliquefaciens primed and challenged, A. spinulosporus primed and challenged, B. amyloliquefaciens and A. spinulosporus consortium primed and challenged)” revealed differential early upregulation of SOD, PAL, PO, PPO activities and TPC content in beneficial microbes primed plants in comparison to unprimed challenged plants. The enhanced defense response in all the rice plants recruited with beneficial microbe was also reflected by reduced plant mortality and an increased plant dry biomass and chlorophyll content. Also, more than 550 protein spots were observed per gel by PD Quest software, a total of 55 differentially expressed protein spots were analysed used MALDI-TOF MS, out of which 48 spots were recognized with a significant score with direct or supporting roles in stress alleviation and disease resistance. qRT-PCR was carried out to compare the biochemical and proteomic data to mRNA levels. We conclude that protein biogenesis and alleviated resistance response may contribute to improved biotic stress adaptation. These results might accelerate the functional regulation of the Xoo-receptive proteins in the presence of beneficial rhizospheric microbes and their computation as promising molecular markers for superior disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelmohsen K, Gorospe M (2012) RNA-binding protein nucleolin in disease. RNA Biol 9(6):799–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Albrecht T, Argueso CT (2017) Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Ann Bot 119:725–735

    CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. https://doi.org/10.1104/pp.24.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, Maciejewski A, Wishart DS (2016) Heatmapper:web-enabled heat mapping for all. Nucleic Acids Res 44(W1):W147–W153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TA, Zhou XJ, Chen JP, Yang Y (2009) Role of ethylene, abscisic acid and MAP kinase pathways in rice blast resistance advances in genetics, genomics and control of rice blast disease. Springer, Netherlands, pp 185–190

    Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    PubMed  PubMed Central  Google Scholar 

  • Bergerat A, DeMassy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386:414–417

    CAS  PubMed  Google Scholar 

  • Blée E, Boachon B, Burcklen M, Guédard ML, Hanano A, Heintz D, Ehlting J, Herrfurth C, Feussner I, Bessoule JJ (2014) The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. Plant Physiol 166(1):109–124

    PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    CAS  Google Scholar 

  • Brueske CH (1980) Phenylalanine ammonia-lyase in tomato roots infected and resistant to the root knot nematode, Melidogyne incognita. Physiol Plant Pathol 16:409–414

    CAS  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell LL, Williams OB (1951) A study of the chitin decomposing microorganisms of marine origin. J Gen Microbiol 5:894–905

    CAS  PubMed  Google Scholar 

  • Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, Karlen SD, Bukhman YV, Foster CE, Thrower N, Bruno LC, Moskvin OV, Johnson ET, Willhoit ME, Phutane M, Ralph J, Mansfield SD, Nicholson P, Sedbrook JC (2015) Effects of Phenylalanine Ammonia Lyase (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J Exp Bot 66(14):4317–4335. https://doi.org/10.1093/jxb/erv269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrobarty J, Jain A, Mukherjee D, Ghosh S, Das S (2017) Functional diversification of structurally alike NLR proteins in plants. Plant Sci 269:85–93

    Google Scholar 

  • Chaman ME, Copaja SV, Argandona VH (2003) Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. J Agric Food Chem 51:2227–2231

    CAS  PubMed  Google Scholar 

  • Chanclud E, Kisiala A, Emery NRJ, Chalvon V, Ducasse A, Romiti-Michel C, Morel JB (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog 12L:e1005457

    Google Scholar 

  • Chao WS, Gu YQ, Pautot VV, Bray EA, Walling LL (1999) Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid. Plant Physiol 120:979–992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S (2014) Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L) and Fusarium oxysporum f sp ciceri Race1 (Foc1). BMC Genomics 3(15):949. https://doi.org/10.1186/1471-2164-15-949

    Article  CAS  Google Scholar 

  • Cho J, Ryoo N, Ko S, Lee SK, Lee J, Jung KH, Lee YH, Bhoo SH, Winderickx J, An G, Hahn TR, Jeon JS (2006) Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224(3):598–611

    CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N (2011) A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol Biol 76:19–34

    CAS  PubMed  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants:a good time to be BAHD. Curr Opin Plant Biol 9(3):331–340. https://doi.org/10.1016/j.pbi.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  • Debnath B, Islam W, Li M, Sun Y, Lu X, Mitra S, Hussain M, Liu S, Qiu D (2019) Melatonin mediates enhancement of stress tolerance in plants. Int J Mol Sci 20(5):1040

    CAS  PubMed Central  Google Scholar 

  • Dietz KJ, Sauter A, Wichert K, Messdaghi D, Hartung W (2000) Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. J Exp Bot 51:937–944

    CAS  PubMed  Google Scholar 

  • Doerner P, Jørgensen JE, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380(6574):520–523

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • EBIC (2013) Economic overview of the biostimulants sector in Europe. European Biostimulants Industry Council. http://www.biostimulants.eu/2013/04/2013-overview-of-the-european-biostimulants-market

  • Enebe MC, Babalola OO (2019) The impact of microbes in the orchestration of plants’ resistance to biotic stress: a disease management approach. Appl Microbiol Biotechnol 103(1):9–25

    CAS  PubMed  Google Scholar 

  • Fang X, Qi Y (2016) RNAi in plants: an argonaute—centered view. Plant Cell 28(2):272–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • FAO, Ifad, WFP (2015) The state of food insecurity in the world 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome

    Google Scholar 

  • Fiore CL, Jarett JK, Lesser MP (2013) Symbiotic prokaryotic communities from different populations of the giant barrel sponge, Xestospongia muta. Microbiol Open 2:938–952

    CAS  Google Scholar 

  • Fridovich I (1974) Superoxide dismutase. Adv Enzymol 41:35–97

    CAS  PubMed  Google Scholar 

  • Fukami J, Ollero FJ, Megías M, Hungria M (2017) Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 7(1):153. https://doi.org/10.1186/s13568-017-0453-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Bi W, Li H, Wu J, Yu X, Liu D, Wang X (2018) WRKY transcription factors associated with NPR1-mediated acquired resistance in barley are potential resources to improve wheat resistance to Puccinia triticina. Front Plant Sci 9:1486

    PubMed  PubMed Central  Google Scholar 

  • Gauillard F, Richard-Forget F, Nicholas J (1993) A new spectrophotometric assay for polyphenol oxidase activity. Anal Biochem 215:59–65

    CAS  PubMed  Google Scholar 

  • Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E (2016) Post-transcriptional and post-translational regulations of drought and heat response in plants:a spider’s web of mechanisms. Front Plant Sci 6:57. https://doi.org/10.3389/fpls201500057

    Article  Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Plant Pathol 20:73–82

    CAS  Google Scholar 

  • Hankin L, Anagnostaksis L (1975) The use of solid media for detection of enzyme production by fungi. Mycologia 47:597–607

    Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    CAS  PubMed  Google Scholar 

  • Hsieh MH, Lam HM, van de Loo FJ, Coruzzi G (1998) A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Natl Acad Sci 95(23):13965–13970

    CAS  PubMed  PubMed Central  Google Scholar 

  • International Rice Research Institute (2013) World Rice Statistics 2013. IRRI, Los Baños, the Philippines. https://www.irriorg/indexphp?option=com_k2&view=item&id=9081&Itemid=100481&lang=en. Accessed 27 Jan 2020

  • Jain A, Das S (2016) In-sight to the interaction between plants and associated fluorescent Pseudomonas spp. Int J Agron Hindawi Publ, Article ID 4269010

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345(2):646–651

    CAS  PubMed  Google Scholar 

  • Jain A, Singh A, Sarma BK, Singh HB (2012) Microbial consortium mediated reprogramming of defense network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112(3):537–550

    CAS  PubMed  Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2013) Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. J Plant Growth Regul 32:388–398

    CAS  Google Scholar 

  • Jain A, Singh S, Singh S, Sarma BK, Singh HB (2014) Bicontrol agents mediated suppression of oxalic acid induced programmed cell death during Sclerotinia sclerotiorum-pea interaction. J Basic Microbiol Special Issue Signal 55(5):601–606

    Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2015a) Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. J Basic Microbiol. https://doi.org/10.1002/jobm201400628

    Article  PubMed  Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2015b) Comparative proteomics analysis in pea treated with microbial consortium of beneficial microbes reveals changes in protein network to enhance resistance against Sclerotinia sclerotiorum. J Plant Physiol. https://doi.org/10.1016/jjplph201505004

    Article  PubMed  Google Scholar 

  • Jain A, Singh A, Singh S, Singh V, Singh HB (2015c) Phenols enhancement effect of microbial consortium in pea plants restrains Sclerotinia sclerotiorum. Biol Control 89:23–32

    CAS  Google Scholar 

  • Jain A, Chakrobarty J, Das S (2020) Underlying mechanism of plant—microbe crosstalk in shaping microbial ecology of the rhizosphere. Acta Physiol Plant 42:8. https://doi.org/10.1007/s11738-019-3000-0

    Article  Google Scholar 

  • Ji XL, Lu GB, Gai YP, Zheng CC, Mu ZM (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573

    CAS  PubMed  Google Scholar 

  • Jiang CH, Yao XF, Mi DD, Li ZL, Yang BY, Zheng Y, Qi YJ, Guo JH (2019) Comparative transcriptome analysis reveals the biocontrol mechanism of Bacillus velezensis F21 against Fusarium wilt on watermelon. Front Microbiol 10:652. https://doi.org/10.3389/fmicb201900652

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karbstein K, Jonas S, Doudna JA (2005) An essential GTPase promotes assembly of preribosomal rna processing complexes. Mol Cell 20:633–643

    CAS  PubMed  Google Scholar 

  • Karuppiah V, Sunn J, Li T, Vallikkannu M, Chen J (2019) Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01068

    Article  PubMed  PubMed Central  Google Scholar 

  • Kauffman E, Reddy APK, Hsien SPY, Merca SD (1973) An improved technique for resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57:537–541

    Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  • King JE (1932) The colorimetric determination of phosphorus. Biochem J 26:292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koistinen KM, Hassinen VH, Gynther PAM, Lehesranta SJ, Keinänen SI, Kokko HI, Oksanen EJ, Tervahauta AI, Auriola S, Kärenlampi SO (2002) Birch PR-10c is induced by factors causing oxidative stress but appears not to confer tolerance to these agents. New Phytol 155:381–391

    CAS  PubMed  Google Scholar 

  • Kong W, Meldgin DR, Collins JJ, Lu T (2018) Designing microbial consortia with defined social interactions. Nat Chem Biol 14:821–829

    CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Law JWF, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, Goh BH, Lee LH (2017) The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol 8:3

    PubMed  PubMed Central  Google Scholar 

  • Lee YR, Liu B (2004) Cytoskeletal motors in Arabidopsis sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I (2006) Activation of glucosidase via stress induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109–1120

    CAS  PubMed  Google Scholar 

  • Li J, Li C, Lu S (2018) Identification and characterization of the cytosine-5 DNA methyltransferase gene family in Salvia miltiorrhiza. Peer J 6:e4461

    PubMed  PubMed Central  Google Scholar 

  • Liu M, Pirrello J, Chervin C, Roustan JP, Bouzayen M (2015) Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiol 169:2380–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CMJ, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol. https://doi.org/10.3389/fmicb201702552

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔDeltaC(T). Method 25(4):402–408

    CAS  Google Scholar 

  • Loper JE, Scroth MN (1986) Influence of bacterial sources on indole-3 acetic acid on root elongation of sugarbeet. Phytopathol 76:386–389

    CAS  Google Scholar 

  • Lugtenberg B (2015) Principles of plant-microbe interactions: microbes for sustainable agriculture. Springer, Cham, p 448

    Google Scholar 

  • Mahmood T, Jan A, Kakishima M, Komatsu S (2006) Proteomic analysis of bacterial-blight defense responsive proteins in rice leaf blades. Proteomics 6:6053–6065

    CAS  PubMed  Google Scholar 

  • Niño-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7(5):303–324

    PubMed  Google Scholar 

  • Oliver SN, Lunn JE, Urbanczyk-Wochniak E, Lytovchenko A, van Dongen JT, Faix B, Schmälzlin E, Fernie AR, Geigenberger P (2008) Pyruvate resulting in an in vivo repression of the alternative oxidase. Plant Physiol 148(3):1640–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH—a hierarchic classification of protein domain structures. Structure 5:1093–1109

    CAS  PubMed  Google Scholar 

  • Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806

    CAS  PubMed  Google Scholar 

  • Patel JS, Singh A, Singh HB, Sarma B (2015) Plant genotype, microbial recruitment and nutritional security. Front Plant Sci. https://doi.org/10.3389/fpls201500608

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Montaño F, Alías-Villegas C, Bellogín RA, del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants:from microorganism capacities to crop production. Microbiol Res 169(5–6):325–336

    PubMed  Google Scholar 

  • Prabhukarthikeyan SR, Yadav M, Anandan A, Aravindan S, Keerthana U, Raghu R, Mathew B, Parameswaran C, Periyasamy P, Prakash R (2019) Bio-protection of brown spot disease of rice and insight into the molecular basis of interaction between Oryza sativa, Bipolaris oryzae and Bacillus amyloliquefaciens. Biol Control. https://doi.org/10.1016/jbiocontrol2019104018

    Article  Google Scholar 

  • Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerré-Tugayé MT, Rosahl S, Castresana C, Hamberg M, Fournier J (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139:1902–1913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp, a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE 12(11):e0187412. https://doi.org/10.1371/journalpone0187412

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajagopal L, Sundari CS, Balasubramanian D, Sonti RV (1997) The bacterial pigment xanthomonadin offers protection against photodamage. FEBS Lett 415(2):125–128

    CAS  PubMed  Google Scholar 

  • Ram RM, Jain A, Singh A, Singh HB (2015) Biological management of Sclerotinia rot of bean through enhanced host defense responses triggered by Pseudomonas and Trichoderma species. J Pure Appl Microbiol 9(1):523–532

    CAS  Google Scholar 

  • Reay D (2019) Climate-Smart Rice. In: Climate-smart food Palgrave Pivot, Cham, pp 121–133. https://doi.org/10.1007/978-3-030-18206-9_10

  • Reddy AS, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics. https://doi.org/10.1186/1471-2164-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiser L, Sanchez-Baracaldo P, Hake S (2000) Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Mol Biol 42:151–166

    CAS  PubMed  Google Scholar 

  • Rontein D, Nishida I, Tashiro G, Yoshioka K, Wu W, Voelker DR, Basset G, Hanson AD (2001) Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J Biol Chem 276(38):35523–35529

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Nagasaki H, Inukai Y, Sato Y, Matsuoka M (2006) Ectopic expression of KNOTTED1-Like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Dev Horm Action. https://doi.org/10.1104/pp.106.085811

    Article  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    CAS  Google Scholar 

  • Schaffer MA, Fischer RL (1988) Analysis of mRNAs that accumulate in response to low temperature identifies a thiol protease gene in tomato. Plant Physiol 87:431–436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer MA, Fischer RL (1990) Transcriptional activation by heat and cold of a thiol protease gene in tomato. Plant Physiol 93:1486–1491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    CAS  PubMed  Google Scholar 

  • Shanti ML, Shenoy VV, Devi GL, Kumar VM, Premalatha P, Kumar GN, Shashidhar HE, Zehr UB, Freeman WH (2010) Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivars and parental lines of hybrid rice. J Plant Pathol 92(2):495–501

    CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Simova-Stoilova LP, Romero-Rodríguez MC, Sánchez-Lucas R, Navarro-Cerrillo RMJ, Medina-Aunon JA, Jorrín-Novo JV (2015) 2-DE proteomics analysis of drought treated seedlings of Quercus ilex supports a root active strategy for metabolic adaptation in response to water shortage. Front Plant Sci 6:627

    PubMed  PubMed Central  Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2013) Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress. Ann Appl Biol 163:33–46

    Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014) Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 169:353–360

    CAS  PubMed  Google Scholar 

  • Stringlis IA, Proietti S, Hickman R, Van Verk MC, Zamioudis C, Pieterse CMJ (2018) Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. Plant J 93(1):166–180

    CAS  PubMed  Google Scholar 

  • Sun L, Zhang Q, Wu J, Zhang L, Jiao X, Zhang S, Zhang Z, Sun D, Lu T, Sun Y (2014) Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice. Plant Physiol 165(1):335–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suprapta DN (2012) Potential of microbial antagonists as biocontrol agents against plant fungal pathogens. J ISSAAS 18:1–8

    Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11:protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  • The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506-515

    Google Scholar 

  • Tuteja N, Tran NQ, Dang HQ, Tuteja R (2011) Plant MCM proteins: role in DNA replication and beyond. Plant Mol Biol. https://doi.org/10.1007/s11103-011-9836-3

    Article  PubMed  Google Scholar 

  • van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152:959–0997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    CAS  PubMed  Google Scholar 

  • Wang D, Eraslan B, Wieland T, Hallström B, Hopf T, Zolg DP, Zecha J, Asplund A, Li LH, Meng C, Frejno M, Schmidt T, Schnatbaum K, Wilhelm M, Ponten F, Uhlen M, Gagneur J, Hahne H, Kuster B (2019) A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol Syst Biol 15(2):e8503

    PubMed  PubMed Central  Google Scholar 

  • Wohlgemuth H, Mittelstrass K, Kschieschan S, Bender J, Weigel HJ, Overmyer K, Kangasjärvi J, Sandermann H, Langebartels C (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ 25(6):717–726

    CAS  Google Scholar 

  • Woo SL, Pepe O (2018) Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front Plant Sci 9:1801

    PubMed  PubMed Central  Google Scholar 

  • Yang SM, Shim GY, Kim BG, Ahn JH (2015) Biological synthesis of coumarins in Escherichia coli. Microb Cell Fact 14:65. https://doi.org/10.1186/s12934-015-0248-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad H, Zubair M, Iqbal M (2017) Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 8:1895

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F (2015) Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET mediated signaling pathways. BMC Plant Biol 15:252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Shetty K (2000) Enhancement of pea (Pisum sativum) seedling vigour and associated phenolic content by extracts of apple pomace fermented with Trichoderma spp. Process Biochem 36:79–84

    CAS  Google Scholar 

  • Zhong R, Burk DH, Morrison WH, Ye ZH (2002) A Kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14(12):3101–3117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Perez M, Aldon D, Galaud JP (2017a) Respective contribution of CML8 and CML9, two Arabidopsis calmodulin-like proteins, to plant stress responses. Plant Signal Behav 12(5):e1322246

    PubMed  PubMed Central  Google Scholar 

  • Zhu X, Robe E, Jomat L, Aldon D, Mazars C, Galaud JP (2017b) CML8, an Arabidopsis calmodulin-like protein plays a role in Pseudomonas syringae plant immunity. Plant Cell Physiol 58(2):307–319

    PubMed  Google Scholar 

Download references

Acknowledgements

AJ is grateful to the Department of Science and Technology, India for grant under the DST Young Scientist Scheme (YSS/2015/000773). SD acknowledges the Indian National Science Academy for providing Senior Scientist Fellowship. We thank Mr. Swarnava Das for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampa Das.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Chatterjee, A. & Das, S. Synergistic consortium of beneficial microorganisms in rice rhizosphere promotes host defense to blight-causing Xanthomonas oryzae pv. oryzae. Planta 252, 106 (2020). https://doi.org/10.1007/s00425-020-03515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03515-x

Keywords

Navigation