Skip to main content

Advertisement

Log in

Maleic hydrazide elicits global transcriptomic changes in chemically topped tobacco to influence shoot bud development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Transcriptomic analysis revealed maleic hydrazide suppresses apical and axillary bud development by altering the expression of genes related to meristem development, cell division, DNA replication, DNA damage and recombination, and phytohormone signaling.

Abstract

Topping (removal of apical buds) is a common agricultural practice for some crop plants including cotton, cannabis, and tobacco. Maleic hydrazide (MH) is a systemic suckercide, a chemical that inhibits shoot bud growth, used to control the growth of apical (ApB) and axillary buds (AxB) following topping. However, the influence of MH on gene expression and the underlying molecular mechanism of controlling meristem development are not well studied. Our RNA sequencing analysis showed that MH significantly influences the transcriptomic landscape in ApB and AxB of chemically topped tobacco. Gene ontology (GO) enrichment analysis revealed that upregulated genes in ApB were enriched for phosphorelay signal transduction, and the regulation of transition timing from vegetative to reproductive phase, whereas downregulated genes were largely associated with meristem maintenance, cytokinin metabolism, cell wall synthesis, photosynthesis, and DNA metabolism. In MH-treated AxB, GO terms related to defense response and oxylipin metabolism were overrepresented in upregulated genes. GO terms associated with cell cycle, DNA metabolism, and cytokinin metabolism were enriched in downregulated genes. Expression of KNOX and MADS transcription factor (TF) family genes, known to be involved in meristem development, were affected in ApB and AxB by MH treatment. The promoters of MH-responsive genes are enriched for several known cis-acting elements, suggesting the involvement of a subset of TF families. Our findings suggest that MH affects shoot bud development in chemically topped tobacco by altering the expression of genes related to meristem development, DNA repair and recombination, cell division, and phytohormone signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACO:

1-Aminocyclopropane-1-carboxylate oxidase

ACS:

1-Aminocyclopropane-1-carboxylate synthase

AGL:

Agamous-like

AOS:

Allene oxide synthase

ApB:

Apical bud

AxB:

Axillary bud

ARR:

Arabidopsis Response regulators

APRR:

Arabidopsis Pseudo-response regulators

BARD1:

Breast cancer-associated ring domain 1

BTB/POZ:

Bric-à-brac, tramtrack and broad complex/poxvirus and zinc finger

CDC:

Cell division control

Cdt1:

Chromatin licensing and DNA replication factor 1

CK:

Cytokinin

CPS:

ent-Copalyl diphosphate synthase

CRF:

Cytokinin response factor

DEG:

Differentially expressed genes

Cul4:

Uniculme4

DHAR:

Glutathione-dependent dehydroascorbate reductase

ERF:

Ethylene response factor

ET:

Ethylene

FDR:

False discovery rate

FPKM:

Fragments per kilobase of gene per million reads mapped

GA:

Gibberellin

GGDP:

Geranylgeranyl diphosphate

GAox:

GA oxidases

GO:

Gene ontology

GST:

Glutathione S-transferases

HK:

Histidine kinase

HP:

His-containing phosphotransfer protein

JA:

Jasmonic acid

KNATM:

KNOX Arabidopsis thaliana MEINOX

KNOX:

Knotted1-like homeobox

KO:

Ent-kaurine oxidase

KS:

Ent-kaurene synthase

LAS:

Lateral suppressor

MCM:

Minichromosome maintenance

MH:

Maleic hydrazide

NTPase:

Nucleotide triphosphatases

ORC:

Origin recognition complex

PR genes:

Pathogenesis-related genes

PWMs:

Position-specific weight matrices

RAX:

Regulator of axillary meristems

RIN:

RNA integrity number

REV:

Revolute

ROX:

Regulator of axillary meristem formation

RPN12A:

Regulatory particle non-atpase 12A

SA:

Salicylic acid

SAM:

Shoot apical meristem

SAMT:

Salicylic acid carboxyl methyltransferase

TB1:

Teosinte branched 1

TF:

Transcription factor

TS:

Terpene synthase

TSS:

Translation start site

TSNA:

Tobacco-specific nitrosamines

References

  • Apelbaum A, Burg SP (1972) Effect of ethylene on cell division and deoxyribonucleic acid synthesis in Pisum sativum. Plant Physiol 50(1):117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backman TWH, Girke T (2016) systemPipeR: NGS workflow and report generation environment. BMC Bioinformatics 17(1):388

    Article  Google Scholar 

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125(4):655–664

    Article  CAS  PubMed  Google Scholar 

  • Borner R, Kampmann G, Chandler J, Gleißner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24(5):591–599

    Article  CAS  PubMed  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(suppl 1):S18–S31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G (2013) Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep 32(10):1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Clapp MK, Seltmann H (1983) Anatomy of axillary meristems from tobacco plants treated with maleic hydrazide. Bot Gaz 144(1):86–91

    Article  CAS  Google Scholar 

  • Cline JA, Bakker CJ (2016) Prohexadione-calcium, ethephon, trinexapac-ethyl, and maleic hydrazide reduce extension shoot growth of apple. Canad J Plant Sci 97(3):457–465

    Google Scholar 

  • Collins W, Hawks S (1993) Principles of flue-cured tobacco production. Collins-Hawks Books, Raleigh

    Google Scholar 

  • Dalton DA, Boniface C, Turner Z, Lindahl A, Kim HJ, Jelinek L, Govindarajulu M, Finger RE, Taylor CG (2009) Physiological roles of glutathione s-transferases in soybean root nodules. Plant Physiol 150(1):521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G, Muthukrishnan S, Datta S (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98(6–7):1138–1145

    Article  CAS  Google Scholar 

  • de las Mercedes Dana M, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142 (2):722–730

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14(21):1935–1940

    Article  CAS  PubMed  Google Scholar 

  • Droog F, Spek A, van der Kooy A, de Ruyter A, Hoge H, Libbenga K, Hooykaas P, van der Zaal B (1995) Promoter analysis of the auxin-regulated tobacco glutathione S-transferase genes Nt103-1 and Nt103-35. Plant Mol Biol 29(3):413–429

    Article  CAS  PubMed  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The shoot meristemless gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10(6):967–979

    Article  CAS  PubMed  Google Scholar 

  • Fisher LR, Priest JA (2004) Topping and sucker management and use of ethephon. Flue-Cured Tobacco Information, North Carolina State University:106–130

  • Galperin MY, Rigden DJ, Fernandez-Suarez XM (2015) The 2015 nucleic acids research database issue and molecular biology database collection. Nucleic Acids Res 43:D1–D5

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Yang X, Zhao W, Lang T, Samuelsson T (2015) Evolution, diversification, and expression of KNOX proteins in plants. Front Plant Sci 6:882

    PubMed  PubMed Central  Google Scholar 

  • Gao Q-M, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155(1):464–476

    Article  CAS  PubMed  Google Scholar 

  • Gianfagna T, Logendra L, Durner E, Janes H (1997) Improving tomato harvest index by controlling crop height and side shoot production. Life Support Biosph Sci 5(2):255–261

    Google Scholar 

  • Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y (2008) Signals derived from YABBY gene activities in organ primordia regulate growth and partitioning of Arabidopsis shoot apical meristems. Plant Cell 20(5):1217–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Kan Y, Liu W (2011) Differential expression of miRNAs in response to topping in flue-cured tobacco (Nicotiana tabacum) roots. PLoS ONE 6(12):e28565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez C (2009) The arabidopsis cell division cycle. The Arabidopsis Book / American Society of Plant Biologists 7:e0120

    Article  PubMed Central  Google Scholar 

  • Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Deve Biol 20(1):125–151

    Article  CAS  Google Scholar 

  • Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21(4):351–360

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5(12):523–530

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H (2007) Overexpression of a Type-a response regulator alters rice morphology and cytokinin metabolism. Plant Cell Physiol 48(3):523–539

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Effgen S, Meyer RC, Theres K, Koornneef M (2012) Epistatic natural allelic variation reveals a function of AGAMOUS-like6 in axillary bud formation in arabidopsis. Plant Cell 24(6):2364–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ, von Mering C, Bork P (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44(D1):D286–D293

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Chen H-C, Sheen J (2002) Two-component signal transduction pathways in arabidopsis. Plant Physiol 129(2):500–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63(1):353–380

    Article  CAS  PubMed  Google Scholar 

  • Itzhaki H, Woodson WR (1993) Characterization of an ethylene-responsive glutathione S-transferase gene cluster in carnation. Plant Mol Biol 22(1):43–58

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G, Baranasic D, Arenillas DJ, Sandelin A, Vandepoele K, Lenhard B, Ballester B, Wasserman WW, Parcy F, Mathelier A (2018) JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46(D1):D260–D266

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Ragni L, Tabb P, Salasini BC, Chatfield S, Datla R, Lock J, Kuai X, Despres C, Proveniers M, Yongguo C, Xiang D, Morin H, Rulliere JP, Citerne S, Hepworth SR, Pautot V (2015) Repression of lateral organ boundary genes by pennywise and pound-foolish is essential for meristem maintenance and flowering in arabidopsis. Plant Physiol 169(3):2166–2186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44(8):868–874

    Article  CAS  PubMed  Google Scholar 

  • Klein WH, Leopold AC (1953) The effects of maleic hydrazide on flower initiation. Plant Physiol 28(2):293–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun DJ, Lee SY, Cho MJ, Weigel D, Kim MC (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J 62(5):807–816

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Meth 9(4):357–359

    Article  CAS  Google Scholar 

  • Lario LD, Ramirez-Parra E, Gutierrez C, Spampinato CP, Casati P (2013) Anti-silencing function1 proteins are involved in ultraviolet-induced DNA damage repair and are cell cycle regulated by E2F transcription factors in Arabidopsis. Plant Physiol 162(2):1164–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21(4):397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438(7071):1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16(2):319–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Tian Z, Yu D (2015) WRKY13 acts in stem development in Arabidopsis thaliana. Plant Sci 236:205–213

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang H, Yu D (2016) Arabidopsis WRKY transcription factors WRKY12 and WRKY13 oppositely regulate flowering under short-day conditions. Mol Plant 9(11):1492–1503

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Bartnikas LM, Volko SM, Ausubel FM, Tang D (2016) Mutation of the glucosinolate biosynthesis enzyme cytochrome P450 83A1 monooxygenase increases camalexin accumulation and powdery mildew resistance. Front Plant Sci 7:227

    PubMed  PubMed Central  Google Scholar 

  • Lo S-F, Yang S-Y, Chen K-T, Hsing Y-I, Zeevaart JAD, Chen L-J, Yu S-M (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20(10):2603–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logendra LS, Gianfagna TJ, Janes HW (2004) Preventing side shoot development with C8/C10 fatty acids increases yield and reduces pruning time in greenhouse tomato. Hort Sci 39(7):1652–1654

    CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in Biological Networks. Bioinformatics 21(16):3448–3449

    Article  CAS  PubMed  Google Scholar 

  • Magnani E, Hake S (2008) KNOX Lost the OX: The arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell 20(4):875–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marie AI, Ihsan A, Salih SH (2007) Effect of sowing date, topping and some growth regulators on growth, pod and seeds yield of okra (Abelmoschus esculentus L.M.). In: African crop science society conference proceedings, vol 8, pp 473–478

  • Martínez-Bello L, Moritz T, López-Díaz I (2015) Silencing C(19)-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants. J Exp Bot 66(19):5897–5910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLeay RC, Bailey TL (2010) Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinform 11(1):165

    Article  CAS  Google Scholar 

  • Mitchell A, Chang H-Y, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong S-Y, Bateman A, Punta M, Attwood TK, Sigrist CJA, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale DA, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43(D1):D213–D221

    Article  PubMed  Google Scholar 

  • Müller D, Schmitz G, Theres K (2006) Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in arabidopsis. Plant Cell 18(3):586–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muñoz-Viana R, Wildhaber T, Trejo-Arellano MS, Mozgová I, Hennig L (2017) Arabidopsis chromatin assembly factor 1 is required for occupancy and position of a subset of nucleosomes. Plant J 92(3):363–374

    Article  CAS  PubMed  Google Scholar 

  • Naylor AW (1950) Observations on the effects of maleic hydrazide on flowering of tobacco, maize and cocklebur. Proc Natl Acad Sci USA 36(4):230–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SA, Bourdon V, Dickinson HG, Twell D, Park SK (2014) Arabidopsis Fused kinase TWO-IN-ONE dominantly inhibits male meiotic cytokinesis. Plant Reprod 27(1):7–17

    Article  CAS  PubMed  Google Scholar 

  • Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L (2010) Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231(5):1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Peek D (1995) Chemical topping burley tobacco. Theses and Dissertations, University of Kentucky

  • Phukan UJ, Jeena GS, Shukla RK (2016) WRKY Transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad KVSK, Abdel-Hameed AAE, Xing D, Reddy ASN (2016) Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress. Sci Rep 6:27021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It's time to flower: the genetic control of flowering time. BioEssays 26(4):363–373

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Guo H, Li K, Liu W (2012) Comprehensive analysis of differential genes and miRNA profiles for discovery of topping-responsive genes in flue-cured tobacco roots. FEBS J 279(6):1054–1070

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Raines T, Shanks C, Cheng C-Y, McPherson D, Argueso CT, Kim HJ, Franco-Zorrilla JM, López-Vidriero I, Solano R, Vaňková R, Schaller GE, Kieber JJ (2016) The cytokinin response factors modulate root and shoot growth and promote leaf senescence in Arabidopsis. Plant J 85(1):134–147

    Article  CAS  PubMed  Google Scholar 

  • Rao KN, Bangarayya M, Murthy YCN, Babu DP (2003) Effect of topping at different growth stages on the yield and quality of fcv tobacco grown in northern light soils of Andhra Pradesh Indian. J Plant Physiol 8(1):48–52

    Google Scholar 

  • Renou A, Téréta I, Togola M (2011) Manual topping decreases bollworm infestations in cotton cultivation in Mali. Crop Protection 30(10):1370–1375

    Article  Google Scholar 

  • Richmond MD (2018) Chemical topping burley tobacco. Theses and Dissertations, University of Kentucky

  • Rijpkema AS, Vandenbussche M, Koes R, Heijmans K, Gerats T (2010) Variations on a theme: Changes in the floral ABCs in angiosperms. Semin Cell Dev Biol 21(1):100–107

    Article  CAS  PubMed  Google Scholar 

  • Rinne PLH, Paul LK, Vahala J, Kangasjärvi J, van der Schoot C (2016) Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-β-glucanase genes during branching in hybrid aspen. J Exp Bot 67:5975–5991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarowar S, Kim YJ, Kim EN, Kim KD, Hwang BK, Islam R, Shin JS (2005) Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Rep 24(4):216–224

    Article  CAS  PubMed  Google Scholar 

  • Schluttenhofer C, Yuan L (2015) Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol 167(2):295–306

    Article  CAS  PubMed  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27(6):863–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15(1):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh F, Kumar R, Kumar P, Pal S (2011) Effect of irrigation, fertility and topping on Indian mustard (Brassica juncea). Progress Agricul 11(2):477–478

    Google Scholar 

  • Singh SK, Wu Y, Ghosh JS, Pattanaik S, Fisher C, Wang Y, Lawson D, Yuan L (2015) RNA-sequencing reveals global transcriptomic changes in Nicotiana tabacum responding to topping and treatment of axillary-shoot control chemicals. Sci Rep 5:18148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalle J, Kurepa J, Yang P, Babiychuk E, Kushnir S, Durski A, Vierstra RD (2002) Cytokinin growth responses in arabidopsis involve the 26S proteasome subunit RPN12. Plant Cell 14(1):17–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legrand M, Fritig B (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75(8):687–706

    Article  CAS  PubMed  Google Scholar 

  • Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6(7):e21800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang S, Wang Y, Li Z, Gui Y, Xiao B, Xie J, Zhu Q-H, Fan L (2012) Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biol 12(1):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi M, Sasaki N, Tsuge T, Aoyama T, Oka A (2007) ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol 48(2):263–277

    Article  CAS  PubMed  Google Scholar 

  • Tavakol E, Okagaki R, Verderio G, Shariati JV, Hussien A, Bilgic H, Scanlon MJ, Todt NR, Close TJ, Druka A, Waugh R, Steuernagel B, Ariyadasa R, Himmelbach A, Stein N, Muehlbauer GJ, Rossini L (2015) The Barley Uniculme4 Gene Encodes a BLADE-ON-PETIOLE-Like Protein That Controls Tillering and Leaf Patterning. Plant Physiol 168(1):164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    Article  CAS  PubMed  Google Scholar 

  • Tripathi M, Chaudhary B, Singh S, Bh H (2013) Growth and yield of sunnhemp (Crotalaria juncea L.) as influenced by spacing and topping practices. African J Agric Res 8(28):3744–3749

    Article  Google Scholar 

  • Tso T-C (1990) Production, physiology, and biochemistry of tobacco plant. Ideals, USA

    Google Scholar 

  • van der Kop DA, Schuyer M, Scheres B, van der Zaal BJ, Hooykaas PJ (1996) Isolation and characterization of an auxin-inducible glutathione S-transferase gene of Arabidopsis thaliana. Plant Molecular Biol 30(4):839–844

    Article  Google Scholar 

  • Van der Zaal E, Droog F, Boot C, Hensgens L, Hoge J, Schilperoort R, Libbenga K (1991) Promoters of auxin-induced genes from tobacco can lead to auxin-inducible and root tip-specific expression. Plant Mol Biol 16(6):983–998

    Article  PubMed  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55(2):85–97

    Article  Google Scholar 

  • Vasudevan S, Sudarshan J, Kurdikeri M, Dharmatti P (2008) Influence of pinching of apical bud and chemical sprays on seed yield and quality of fenugreek. Karnataka J Agric Sci 21:26–29

    Google Scholar 

  • Venezian A, Dor E, Achdari G, Plakhine D, Smirnov E, Hershenhorn J (2017) The Influence of the Plant Growth Regulator Maleic Hydrazide on Egyptian Broomrape Early Developmental Stages and Its Control Efficacy in Tomato under Greenhouse and Field Conditions. Front Plant Sci 8:691

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Kim SG, Kang KY, Kim J-G, Park S-R, Gupta R, Kim YH, Wang Y, Kim ST (2016) Overexpression of a pathogenesis-related protein 10 enhances biotic and abiotic stress tolerance in rice. Plant Pathology J 32(6):552–562

    Article  CAS  Google Scholar 

  • Xu M, Hu T, McKim SM, Murmu J, Haughn GW, Hepworth SR (2010) Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant J 63(6):974–989

    Article  CAS  PubMed  Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol 15(17):1566–1571

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Wang Q, Schmitz G, Müller D, Theres K (2012a) The bHLH protein ROX acts in concert with RAX1 and LAS to modulate axillary meristem formation in Arabidopsis. Plant J 71(1):61–70

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Jiao Y (2016) Regulation of axillary meristem initiation by transcription factors and plant hormones. Front Plant Sci 7:183

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ouyand Z, Wang S-f (2012b) The study on the cotton growth and development under two different agronomy practices topping and pruning via without topping and pruning. Acta Agric Bor Sin 27:234–239

    Google Scholar 

  • Yokoyama A, Yamashino T, Amano Y, Tajima Y, Imamura A, Sakakibara H, Mizuno T (2007) Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana. Plant Cell Physiol 48(1):84–96

    Article  CAS  PubMed  Google Scholar 

  • Zambelli F, Pesole G, Pavesi G (2009) Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes. Nucleic Acids Res 37(Suppl_2):247–252

    Article  CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48(4):592–605

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported partially by grants from the Kentucky Tobacco Research and Development Center, University of Kentucky and The Council for Burley Tobacco, Kentucky, to L.Y. and S.P., and a Graduate Research Fellowship to M.D.R. from Department of Plant Soil Sciences, University of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sitakanta Pattanaik or Ling Yuan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Anastasios Melis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 643 kb)

Supplementary file2 (XLSX 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Richmond, M.D., Pearce, R.C. et al. Maleic hydrazide elicits global transcriptomic changes in chemically topped tobacco to influence shoot bud development. Planta 252, 64 (2020). https://doi.org/10.1007/s00425-020-03460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03460-9

Keywords

Navigation