Skip to main content
Log in

Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The accumulation of NH4+ in response to Fe deficiency plays a role not only in the remobilization of Fe from the root cell wall, but also in the transportation of Fe from root to shoot.

Abstract

Ammonium (NH4+) plays an important role in phosphorus-deficiency responses in rice, but its role in responses to Fe deficiency remains unknown. Here, we demonstrate that the accumulation of NH4+ plays a pivotal role when Arabidopsis thaliana plants are subject to Fe deficiency. The Arabidopsis amt1-3 mutant, which is defective in endogenous NH4+ sensing, exhibited increased sensitivity to Fe deficiency compared to WT (wild type; Col-0). In addition, exogenous application of NH4+ significantly alleviated Fe deficiency symptoms in plants. NH4+ triggers the production of nitric oxide (NO), which then induces ferric-chelate reductase (FCR) activity and accelerates the release of Fe from the cell wall, especially hemicellulose, thereby increasing the availability of soluble Fe in roots. NH4+ also increases soluble Fe levels in shoots by upregulating genes involved in Fe translocation, such as FRD3 (FERRIC REDUCTASE DEFECTIVE3) and NAS1 (NICOTIANAMINE SYNTHASE1), hence, alleviating leaf chlorosis. Overall, NH4+ plays an important role in the reutilization of Fe from the cell wall and the redistribution of Fe from root to shoot in Fe-deficient Arabidopsis, a process dependent on NO accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DCCD:

N,N′-Dicyclohexylcarbodiimide

FCR:

Ferric-chelate reductase

NO:

Nitric oxide

SPAD:

Soil plant analysis development

References

  • Ariz I, Asensio AC, Zamarreno AM, Garcia-Mina JM, Aparicio-Tejo P, Moran JF (2013) Changes in the C/N balance caused by increasing external ammonium concentrations are driven by carbon and energy availabilities during ammonium nutrition in pea plants: the key roles of asparagine synthetase and anaplerotic enzymes. Physiol Plant 148:522–537

    Article  CAS  PubMed  Google Scholar 

  • Bagh K, Hiraoki T, Thorpe TA, Vogel HJ (2004) Nitrogen-15 NMR studies of nitrogen metabolism in Picea glauca buds. Plant Physiol Biochem 42:803–809

    Article  CAS  PubMed  Google Scholar 

  • Barbez E, Dünser K, Gaidora A, Lendl T, Busch W (2017) Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci USA 114:E4884–E4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  PubMed  PubMed Central  Google Scholar 

  • Bienfait HF, Vandenbriel W, Meslandmul NT (1985) Free space iron pools in roots—generation and mobilization. Plant Physiol 78:596–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair GJ, Mamaril CP, Miller MH (1971) Influence of nitrogen source on phosphorus uptake by corn from soils differing in pH. Agron J 63:235–238

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Brumbarova T, Bauer P, Ivanov R (2015) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci 20:124–133

    Article  CAS  PubMed  Google Scholar 

  • Carrier P, Baryla A, Havaux M (2003) Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216:939–950

    CAS  PubMed  Google Scholar 

  • Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galvan A, Fernandez E (2017) Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci 22:163–174

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 1972:208–213

    Article  Google Scholar 

  • Chen WW, Yang JL, Qin C, Jin CW, Mo JH, Ye T, Zheng SJ (2010) Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol 154:810–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connorton JM, Balk J, Rodríguez-Celma J (2017) Iron homeostasis in plants—a brief overview. Metallomics 9:813–823

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Ann Rev Plant Biol 54:183–206

    Article  CAS  Google Scholar 

  • DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Feast NA, Dennis PE (1996) A comparison of methods for nitrogen isotope analysis of groundwater. Chem Geol 129:167–171

    Article  CAS  Google Scholar 

  • Fernandez-Crespo E, Camanes G, Garcia-Agustin P (2012) Ammonium enhances resistance to salinity stress in citrus plants. J Plant Physiol 169:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Crespo E, Gomez-Pastor R, Scalschi L, Llorens E, Camanes G, Garcia-Agustin P (2014) NH4 + induces antioxidant cellular machinery and provides resistance to salt stress in citrus plants. Trees Struct Funct 28:1693–1704

    Article  CAS  Google Scholar 

  • García MJ, Lucena C, Romera FJ, Alcántara E, Pérez-Vicente R (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J Exp Bot 61:3885–3899

    Article  CAS  PubMed  Google Scholar 

  • García MJ, Suárez V, Romera FJ, Alcántara E, Pérez-Vicente R (2011) A new model involving ethylene, nitric oxide and Fe to explain the regulation of Fe-acquisition genes in Strategy I plants. Plant Physiol Biochem 49:537–544

    Article  CAS  PubMed  Google Scholar 

  • García MJ, Romera FJ, Lucena C, Alcántara E, Pérez-Vicente R (2015) Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies. Plant Physiol 169:51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García MJ, Corpas FJ, Lucena C, Alcántara E, Pérez-Vicente R, Zamarreño ÁM, Bacaicoa E, García-Mina JM, Bauer P, Romera FJ (2018) A shoot Fe signaling pathway requiring the OPT3 transporter controls GSNO reductase and ethylene in Arabidopsis thaliana roots. Front Plant Sci 9:1325

    Article  PubMed  PubMed Central  Google Scholar 

  • Graziano M, Lamattina L (2007) Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J 52:949–960

    Article  CAS  PubMed  Google Scholar 

  • Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136:2523–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron—nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques R, Jasik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol 50:587–597

    Article  CAS  PubMed  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husted S, Hebbern CA, Mattsson M, Schjoerring JK (2000) A critical experimental evaluation of methods for determination of NH4 + in plant tissue, xylem sap and apoplastic fluid. Physiol Plant 109:167–179

    Article  CAS  Google Scholar 

  • Jing J, Rui Y, Zhang F, Rengel Z, Shen J (2010) Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crop Res 119:355–364

    Article  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Ann Rev Plant Biol 63:131–152

  • Kong J, Dong Y, Song Y, Bai X, Tian X, Xu L, Liu S, He Z (2016) Role of exogenous nitric oxide in alleviating iron deficiency stress of peanut seedlings (Arachis hypogaea L.). J Plant Growth Regul 35:31–43

    Article  CAS  Google Scholar 

  • Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY, Zheng SJ (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ 37:852–863

    Article  CAS  PubMed  Google Scholar 

  • Lima JE, Kojima S, Takahashi H, von Wiren N (2010) Ammonium triggers lateral root branching in Arabidopsis in an ammonium transporter 1;3-dependent manner. Plant Cell 22:3621–3633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA 99:13939–13943

    Article  CAS  Google Scholar 

  • Ramirez L, Julian Zabaleta E, Lamattina L (2010) Nitric oxide and frataxin: two players contributing to maintain cellular iron homeostasis. Ann Bot 105:801–810

    Article  CAS  PubMed  Google Scholar 

  • Römheld V (1987) Different strategies for iron acquisition in higher plants. Physiol Plant 70:231–234

    Article  Google Scholar 

  • Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183:1072–1084

    Article  CAS  PubMed  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol 44:726–734

    Article  CAS  PubMed  Google Scholar 

  • Szczerba MW, Britto DT, Balkos KD, Kronzucker HJ (2008) Alleviation of rapid, futile ammonium cycling at the plasma membrane by potassium reveals K+-sensitive and-insensitive components of NH4 + transport. J Exp Bot 59:303–313

    Article  CAS  PubMed  Google Scholar 

  • Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477

    Article  CAS  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigani G, Di Silvestre D, Agresta AM, Donnini S, Mauri P, Gehl C, Bittner F, Murgia I (2017) Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus) plants. New Phytol 213:1222–1241

    Article  CAS  PubMed  Google Scholar 

  • von Wiren N, Merrick M (2004) Regulation and function of ammonium carriers in bacteria, fungi, and plants. Mol Mech Control Transmembr Transp 9:95–120 (Berlin, Heidelberg)

    Article  CAS  Google Scholar 

  • Wang N, Cui Y, Liu Y, Fan HJ, Du J, Huang ZG, Yuan YX, Wu HL, Ling HQ (2013) Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol Plant 6:503–513

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Chen WW, Chen LQ, Qin C, Jin CW, Shi YZ, Zheng SJ (2013) The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. New Phytol 197:815–824

    Article  CAS  PubMed  Google Scholar 

  • Yuan YX, Zhang J, Wang DW, Ling HQ (2005) AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in Strategy I plants. Cell Res 15:613–621

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385–397

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Liu G, Kinoshita T, Zhang R, Zhu Y, Shen Q, Xu G (2012) Stimulation of phosphorus uptake by ammonium nutrition involves plasma membrane H+ ATPase in rice roots. Plant Soil 357:205–214

    Article  CAS  Google Scholar 

  • Zhao XQ, Shen RF, Sun QB (2009) Ammonium under solution culture alleviates aluminum toxicity in rice and reduces aluminum accumulation in roots compared with nitrate. Plant Soil 315:107–121

    Article  CAS  Google Scholar 

  • Zhong H, Lauchli A (1993) Changes of cell wall component and polymer size in primary roots of cotton seedlings under high salinity. J Exp Bot 44:773–778

    Article  CAS  Google Scholar 

  • Zhou C, Liu Z, Zhu L, Ma Z, Wang J, Zhu J (2016) Exogenous melatonin improves plant iron deficiency tolerance via increased accumulation of polyamine-mediated nitric oxide. Int J Mol Sci 17:1777

    Article  CAS  PubMed Central  Google Scholar 

  • Zhu Y, Di T, Xu G, Chen X, Zeng H, Yan F, Shen Q (2009) Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Environ 32:1428–1440

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhou YH, Braam J, Jiang T, Xu XY, Mao CZ, Pan YJ, Yang JL, Wu P, Zheng SJ (2012) XTH31, encoding an in vitro XEH/XET-active enzyme, regulates Al sensitivity by modulating in vivo XET action, cell wall xyloglucan content and Al binding capacity in Arabidopsis. Plant Cell 24:4731–4747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XF, Wang B, Song WF, Zheng SJ, Shen RF (2016a) Putrescine alleviates iron deficiency via NO-dependent reutilization of root cell-wall Fe in Arabidopsis. Plant Physiol 170:558–567

    Article  CAS  PubMed  Google Scholar 

  • Zhu CQ, Zhu XF, Hu AY, Wang C, Wang B, Dong XY, Shen RF (2016b) Differential effects of nitrogen forms on cell wall phosphorus remobilization are mediated by nitric oxide, pectin content, and phosphate transporter expression. Plant Physiol 171:1407–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XF, Wu Q, Zheng L, Shen RF (2017) NaCl alleviates iron deficiency through facilitating root cell wall iron reutilization and its translocation to the shoot in Arabidopsis thaliana. Plant Soil 417:155–167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Youth Innovation Promotion Association of CAS (2015250), the National Key Basic Research Program of China (no. 2014CB441000), and ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (nos. XDB15030302 and XDB15030202). Thanks are also given to the two anonymous reviewers for their valuable comments to improve the quality of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Fang Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X.F., Dong, X.Y., Wu, Q. et al. Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana. Planta 250, 1089–1102 (2019). https://doi.org/10.1007/s00425-019-03202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-019-03202-6

Keywords

Navigation