Skip to main content
Log in

Effect of ancymidol on cell wall metabolism in growing maize cells

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Ancymidol inhibits the incorporation of cellulose into cell walls of maize cell cultures in a gibberellin-independent manner, impairing cell growth; the reduction in the cellulose content is compensated with xylans.

Ancymidol is a plant growth retardant which impairs gibberellin biosynthesis. It has been reported to inhibit cellulose synthesis by tobacco cells, based on its cell-malforming effects. To ascertain the putative role of ancymidol as a cellulose biosynthesis inhibitor, we conducted a biochemical study of its effect on cell growth and cell wall metabolism in maize cultured cells. Ancymidol concentrations ≤ 500 µM progressively reduced cell growth and induced globular cell shape without affecting cell viability. However, cell growth and viability were strongly reduced by ancymidol concentrations ≥ 1.5 mM. The I50 value for the effect of ancymidol on FW gain was 658 µM. A reversal of the inhibitory effects on cell growth was observed when 500 µM ancymidol-treated cultures were supplemented with 100 µM GA3. Ancymidol impaired the accumulation of cellulose in cell walls, as monitored by FTIR spectroscopy. Cells treated with 500 µM ancymidol showed a ~ 60% reduction in cellulose content, with no further change as the ancymidol concentration increased. Cellulose content was partially restored by 100 µM GA3. Radiolabeling experiments confirmed that ancymidol reduced the incorporation of [14C]glucose into α-cellulose and this reduction was not reverted by the simultaneous application of GA3. RT-PCR analysis indicated that the cellulose biosynthesis inhibition caused by ancymidol is not related to a downregulation of ZmCesA gene expression. Additionally, ancymidol treatment increased the incorporation of [3H]arabinose into a hemicellulose-enriched fraction, and up-regulated ZmIRX9 and ZmIRX10L gene expression, indicating an enhancement in the biosynthesis of arabinoxylans as a compensatory response to cellulose reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANW:

Acetic acid–nitric acid–water

CBI:

Cellulose biosynthesis inhibitor

CDTA:

Cyclohexane-trans-1,2-diamine-N,N,N′,N′-tetraacetic acid sodium salt

CesA :

Cellulose synthase gene

References

  • Acebes JL, Encina A, García-Angulo P, Alonso-Simón A, Mélida H, Álvarez JM (2010) Cellulose biosynthesis inhibitors: their uses as potential herbicides and as tools in cellulose and cell wall structural plasticity research. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives and industrial uses. Nova Science Publishers, New York, pp 39–73

    Google Scholar 

  • Ahmad I, Whipker BE, Dole JM (2015) Paclobutrazol or ancymidol effects on postharvest performance of potted ornamental plants and plugs. HortScience 50:1370–1374

    CAS  Google Scholar 

  • Alonso-Simón A, García-Angulo P, Mélida H, Encina A, Álvarez JM, Acebes JL (2011) The use of FTIR spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose biosynthesis inhibitors. Plant Signal Behav 6:1104–1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga KS (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11:287–299

    Article  CAS  Google Scholar 

  • Bai W-Q, Xiao Y-H, Zhao J, Song S-Q, Hu L, Zeng J-Y, Li X-B, Hou L, Luo M, Pei Y (2014) Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers. PLoS One 9:e96537

    Article  PubMed  PubMed Central  Google Scholar 

  • Bischoff V, Cookson SH, Wu S, Scheible W-R (2009) Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J Exp Bot 60:955–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boríková P, Pokorná J, Opatrný Z (2003) Is the lethal and malforming effect of the potential anti-gibberellin retardant ANC on the tobacco BY-2 cell line mediated by the cytoskeleton? Cell Biol Int 27:175–176

    Article  Google Scholar 

  • Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57:732–746

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127:551–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha-um S, Kirdmanee C (2007) Minimal growth in vitro culture for preservation of plant species. Fruit Veg Cereal Sci Biotechnol 1:13–25

    Google Scholar 

  • Coolbaugh RC, Hirano SS, West CA (1978) Studies on the specificity and site of action of α-cyclopropyl-α-[p-methoxyphenyl-5-pyrimidine methyl alcohol (ancymidol), a plant growth regulator. Plant Physiol 62:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coolbaugh RC, Swanson D, West CA (1982) Comparative effects of ancymidol and its analogs on growth of peas and ent-kaurene oxidation in cell-free extracts of immature Marah macrocarpus endosperm. Plant Physiol 69:707–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Castro M, Largo-Gosens A, Álvarez JM, García-Angulo P, Acebes JL (2014) Early cell-wall modifications of maize cell cultures during habituation to dichlobenil. J Plant Physiol 171:127–135

    Article  PubMed  Google Scholar 

  • De Castro M, Miller JG, Acebes JL, Encina A, García-Angulo P, Fry SC (2015) The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells: an example of metabolic plasticity. J Integr Plant Biol 57:373–387

    Article  PubMed  Google Scholar 

  • De Castro M, Martínez-Rubio R, Acebes JL, Encina A, Fry SC, García-Angulo P (2017) Phenolic metabolism and molecular mass distribution of polysaccharides in cellulose-deficient maize cells. J Integr Plant Biol 59:475–495

    Article  PubMed  Google Scholar 

  • Dische Z (1962) Color reactions of carbohydrates. In: Whistler RL, Wolfrom RL (eds) Methods in carbohydrate chemistry. Academic Press, New York, pp 475–514

    Google Scholar 

  • Duncan DR, Widholm JM (1990) Techniques for selecting mutants from plant tissue culture. In: Pollard JW, Walker JM (eds) Methods in molecular biology, vol 6. Plant cell and tissue culture. The Humana Press, Clifton, pp 443–455

    Chapter  Google Scholar 

  • Encina AE, Sevillano JM, Acebes JL, Álvarez J (2002) Cell wall modifications of bean (Phaseolus vulgaris) cell suspensions during habituation and dehabituation to dichlobenil. Physiol Plant 114:182–191

    Article  CAS  PubMed  Google Scholar 

  • Fornalé S, Sonbol F, Maes T, Capellades M, Puigdomenech P, Rigau J, Caparrós-Ruiz D (2006) Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyltransferase genes by two new maize R2R3-MYB transcription factors. Plant Mol Biol 62:809–823

    Article  PubMed  Google Scholar 

  • García-Angulo P, Willats WGT, Encina AE, Alonso-Simón A, Álvarez JM, Acebes JL (2006) Immunocytochemical characterization of the cell walls of bean cell suspensions during habituation and dehabituation to dichlobenil. Physiol Plant 127:87–99

    Article  Google Scholar 

  • Grossmann K, Rademacher W, Jung J (1982) Plant cell suspension cultures as model systems for investigating growth regulating compounds. Plant Cell Rep 1:281–284

    Article  CAS  PubMed  Google Scholar 

  • Grossmann K, Rademacher W, Sauter H, Jung J (1984) Comparative potency of different plant growth retardants in cell cultures and intact plants. J Plant Growth Regul 3:197–205

    Article  CAS  Google Scholar 

  • Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52:161–175

    Article  CAS  PubMed  Google Scholar 

  • Hatfield RD, Rancour DM, Marita JM (2017) Grass cell walls: a story of cross-linking. Front Plant Sci 7:2056

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofmannová J, Schwarzerová K, Havelková L, Boříková P, Petrášek P, Opatrný Z (2008) A novel cellulose synthesis inhibitory action of ancymidol impairs plant cell expansion. J Exp Bot 59:3963–3974

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland N, Holland D, Helentjaris T, Dhugga KS, Xoconostle-Cazares B, Delmer DP (2000) A comparative analysis of the plant cellulose synthase (CesA) gene family. Plant Physiol 123:1313–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Wang S, Zhang B, Shang-Guan K, Shi Y, Zhang D, Liu X, Wu K, Xu Z, Fu X, Zhou Y (2015) A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice. Plant Cell 27:1681–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarret RL (1997) Effects of chemical growth retardants on growth and development of sweetpotato (Ipomoea batata (L.) Lam.) in vitro. J Plant Growth Regul 16:227–231

    Article  CAS  Google Scholar 

  • Jensen JK, Johnson N, Wilkerson CG (2013) Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue. Front Plant Sci 4:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen JK, Johnson NR, Wilkerson CG (2014) Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases. Plant J 80:207–215

    Article  CAS  PubMed  Google Scholar 

  • Kacuráková M, Capek P, Sasinková V, Wellner N, Ebringerová A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Article  Google Scholar 

  • Kaur S, Dhugga KS, Gill K, Singh J (2016) Novel structural and functional motifs in cellulose synthase (CesA) genes of bread wheat (Triticum aestivum, L.). PLoS One 11:e0147046

    Article  PubMed  PubMed Central  Google Scholar 

  • Keyes G, Sorrells ME, Setter TL (1990) Gibberellic acid regulates cell wall extensibility in wheat (Triticum aestivum L.). Plant Physiol 92:242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Largo-Gosens A, Hernández-Altamirano M, García-Calvo L, Alonso-Simón A, Álvarez J, Acebes JL (2014) Fourier transform mid infrared spectroscopy applications for monitoring the structural plasticity of plant cell walls. Front Plant Sci 5:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorences EP, Fry SC (1991) Absolute measurement of cell expansion in plant cell suspension cultures. Plant Cell Tissue Organ Cult 24:211–215

    Article  Google Scholar 

  • Maki SL, Delgado M, Adelberg JW (2005) Time course study of ancymidol for micropropagation of hosta in a liquid culture system. HortScience 40:764–766

    Google Scholar 

  • McCann MC, Bush M, Milioni D, Sado P, Stacey NJ, Catchpole G, Defernez M, Carpita NC, Hofte H, Ulvskov P, Wilson RH, Roberts K (2001) Approaches to understanding the functional architecture of the plant cell wall. Phytochemistry 57:811–821

    Article  CAS  PubMed  Google Scholar 

  • Mélida H, García-Angulo P, Alonso Simón A, Encina A, Álvarez J, Acebes JL (2009) Novel type II cell wall architecture in dichlobenil-habituated maize calluses. Planta 229:617–631

    Article  PubMed  Google Scholar 

  • Mélida H, Encina A, Álvarez J, Acebes JL, Caparrós-Ruiz D (2010) Unraveling the biochemical and molecular networks involved in maize cell habituation to the cellulose biosynthesis inhibitor dichlobenil. Mol Plant 3:842–853

    Article  PubMed  Google Scholar 

  • Menhenett R (1984) Comparison of a new triazole retardant paclobutrazol (PP 333) with ancymidol, chlorphonium chloride, daminozide and piproctanyl bromide, on stem extension and inflorescence development in Chrysanthemum morifolium Ramat. Sci Hortic 24:349–358

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Petti C, Hirano K, Stork J, DeBolt S (2015) Mapping of a cellulose-deficient mutant named dwarf1-1 in Sorghum bicolor to the green revolution gene gibberellin20-oxidase reveals a positive regulatory association between gibberellin and cellulose biosynthesis. Plant Physiol 169:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  CAS  PubMed  Google Scholar 

  • Rademacher W (2016) Chemical regulators of gibberellin status and their application in plant production. In: Hedden P, Thomas ST (eds) The gibberellins. Annual plant reviews, vol 49. Wiley, Chichester, West Sussex, UK, pp 359–404

  • Saeman JF, Moore WE, Millet MA (1963) Sugar unit present. In: Whistler RL (ed) Methods in carbohydrate chemistry. Academic Press, New York, pp 54–69

    Google Scholar 

  • Sarkar D, Chakrabarti SK, Naik PS (2001) Slow-growth conservation of potato microplants: efficacy of ancymidol for long-term storage in vitro. Euphytica 117:133–142

    Article  CAS  Google Scholar 

  • Shive JB, Sisler HD (1976) Effect of ancymidol (a growth retardant) and triarimol (a fungicide) on the growth, sterol and gibberellins of Phaseolus vulgaris (L.). Plant Physiol 57:640–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Guo B, Song F, Peng H, Yao Y, Zhang Y, Sun Q, Ni Z (2011) Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize. Gene 482:34–42

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto E (1987) Gibberellin-dependent root elongation in Lactuca sativa: recovery from growth retardant-suppressed elongation with thickening by low concentration of GA3. Plant Cell Physiol 28:963–973

    CAS  Google Scholar 

  • Tanimoto E (1994) Interaction of gibberellin A3 and ancymidol in the growth and cell-wall extensibility of dwarf pea roots. Plant Cell Physiol 35:1019–1028

    CAS  Google Scholar 

  • Tanimoto E, Huber DJ (1997) Effect of GA3 on the molecular mass of polyuronides in the cell walls of Alaska pea roots. Plant Cell Physiol 38:25–35

    Article  CAS  Google Scholar 

  • Tateno M, Brabham C, DeBolt S (2016) Cellulose biosynthesis inhibitors—a multifunctional toolbox. J Exp Bot 67:533–542

    Article  CAS  PubMed  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  CAS  PubMed  Google Scholar 

  • Wang SW, Steffens GL, Faust M (1986) Effect of paclobutrazol on cell wall polysaccharide composition of the apple tree. Phytochemistry 25:2493–2496

    Article  CAS  Google Scholar 

  • Wu A, Rihouey C, Seveno M, Hörnblad E, Singh SK, Matsunaga T, Ishii T, Lerouge P, Marchant A (2009) The Arabidopsis IRX10 and IRX10-like glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J 57:718–731

    Article  CAS  PubMed  Google Scholar 

  • Xiao G-H, Wang K, Huang G, Zhu Y-X (2016) Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth. J Integr Plant Biol 58:577–589

    Article  CAS  PubMed  Google Scholar 

  • Ziv M, Ariel T (1991) Bud proliferation and plant regeneration in liquid-cultured philodendron treated with ancymidol and paclobutrazol. J Plant Growth Regul 10:53–57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ana Alonso-Simón for her helpful scientific discussion, and Denise Phelps for the English revision of the manuscript. This study was supported by Grants from the Spanish Ministry of Science and Innovation (CGL2008-02470 and AGL2011-30545-C02-02). RM and AL received funding through Ph.D. Grants from the Spanish Ministry of Science and Innovation FPU program, and the University of León, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Acebes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Altamirano, J.M., Largo-Gosens, A., Martínez-Rubio, R. et al. Effect of ancymidol on cell wall metabolism in growing maize cells. Planta 247, 987–999 (2018). https://doi.org/10.1007/s00425-018-2840-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2840-y

Keywords

Navigation