Skip to main content

Advertisement

Log in

Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat.

The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beatty PH, Shrawat AK, Carroll RT, Zhu T, Good AG (2009) Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase. Plant Biotechnol J 7(6):562–576. doi:10.1111/j.1467-7652.2009.00424.x

    Article  CAS  PubMed  Google Scholar 

  • Beatty PH, Carroll RT, Shrawat AK, Guevara D, Good AG (2013) Physiological analysis of nitrogen-efficient rice overexpressing alanine aminotransferase under different N regimes. Botany 91(12):866–883. doi:10.1139/cjb-2013-0171

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710. doi:10.1038/nature11650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wei B, Li G, Fan R, Zhong Y, Wang X, Zhang X (2015) TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis. Planta 242(1):137–151. doi:10.1007/s00425-015-2290-8

    Article  CAS  PubMed  Google Scholar 

  • Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15(3):532–534, 536–537

  • Clemente T, Mitra A (2004) Genetic engineering of wheat: protocols and use to enhance stress tolerance. In: Liang H, Skinner DZ (eds) Genetic transformation of crops. Haworth Press, New York, pp 131–163

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1(4):19–21. doi:10.1007/bf02712670

    Article  CAS  Google Scholar 

  • Diab H, Limami AM (2016) Reconfiguration of N metabolism upon hypoxia stress and recovery: roles of alanine aminotransferase (AlaAT) and glutamate dehydrogenase (GDH). Plants (Basel) 5(2):E25. doi:10.3390/plants5020025

    Google Scholar 

  • Duff SM, Rydel TJ, McClerren AL, Zhang W, Li JY, Sturman EJ, Halls C, Chen S, Zeng J, Peng J, Kretzler CN, Evdokimov A (2012) The enzymology of alanine aminotransferase (AlaAT) isoforms from Hordeum vulgare and other organisms, and the HvAlaAT crystal structure. Arch Biochem Biophys 528(1):90–101. doi:10.1016/j.abb.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  • Eckert H, La Vallee B, Schweiger BJ, Kinney AJ, Cahoon EB, Clemente T (2006) Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224(5):1050–1057. doi:10.1007/s00425-006-0291-3

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA (2011) Wheat physiology: a review of recent developments. Crop Pasture Sci 62(2):95–114

    Article  Google Scholar 

  • Fischer JJ, Beatty PH, Good AG, Muench DG (2013) Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Sci 210:70–81. doi:10.1016/j.plantsci.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Crosby WL (1989) Anaerobic induction of alanine aminotransferase in barley root tissue. Plant Physiol 90(4):1305–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85(3):252–262. doi:10.1139/B07-019

    Article  CAS  Google Scholar 

  • Guerrero FD, Jones JT, Mullet JE (1990) Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol 15(1):11–26. doi:10.1007/bf00017720

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25(6):989–994

    Article  CAS  PubMed  Google Scholar 

  • Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Annu Rev Genet 49:269–289. doi:10.1146/annurev-genet-112414-055037

    Article  CAS  PubMed  Google Scholar 

  • He X, Qu B, Li W, Zhao X, Teng W, Ma W, Ren Y, Li B, Li Z, Tong Y (2015) The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol 169(3):1991–2005. doi:10.1104/pp.15.00568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoagland, Arnon DI (1950) The water-culture method for growing plants without soil. Circular 347, 2nd edn. California Agricultural Experiment Station, University of California, Berkeley

    Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006a) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25(8):784–791. doi:10.1007/s00299-005-0081-6

    Article  CAS  PubMed  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006b) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25:784–791

    Article  CAS  PubMed  Google Scholar 

  • Kendziorek M, Paszkowski A, Zagdanska B (2012) Differential regulation of alanine aminotransferase homologues by abiotic stresses in wheat (Triticum aestivum L.) seedlings. Plant Cell Rep 31(6):1105–1117. doi:10.1007/s00299-012-1231-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Mery S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65(3):789–798. doi:10.1093/jxb/eru001

    Article  CAS  PubMed  Google Scholar 

  • Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R (2011) Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol J 9(8):826–837. doi:10.1111/j.1467-7652.2011.00592.x

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ, Miflin BJ (2003) Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochem 41(6–7):555–564. doi:10.1016/S0981-9428(03)00060-3

    Article  CAS  Google Scholar 

  • Li X, Zeng R, Liao H (2016) Improving crop nutrient efficiency through root architecture modifications. J Integr Plant Biol 58(3):193–202. doi:10.1111/jipb.12434

    Article  PubMed  Google Scholar 

  • Liepman AH, Olsen LJ (2003) Alanine aminotransferase homologs catalyze the glutamate:glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis. Plant Physiol 131(1):215–227. doi:10.1104/pp.011460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z-Q, Clemente T, Farrand SK (2001) Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact 14(1):98–103

    Article  CAS  PubMed  Google Scholar 

  • Markwell J, Osterman JC, Mitchell JL (1995) Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth Res 46(3):467–472. doi:10.1007/BF00032301

    Article  CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105(7):1141–1157. doi:10.1093/aob/mcq028

    Article  PubMed  PubMed Central  Google Scholar 

  • McAllister CH, Good AG (2015) Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS One 10(4):e0121830. doi:10.1371/journal.pone.0121830

    Article  PubMed  PubMed Central  Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10(9):1011–1025. doi:10.1111/j.1467-7652.2012.00700.x

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Fan X, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58(9):2297–2306. doi:10.1093/jxb/erm066

    Article  CAS  PubMed  Google Scholar 

  • Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49(6):1108–1121. doi:10.1111/j.1365-313X.2006.03023.x

    Article  CAS  PubMed  Google Scholar 

  • Muench DG, Good AG (1994) Hypoxically inducible barley alanine aminotransferase: cDNA cloning and expression analysis. Plant Mol Biol 24(3):417–427

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170. doi:10.3389/fpls.2014.00170

    Article  PubMed  PubMed Central  Google Scholar 

  • Nations FaAOotU (2009) Declaration of the World Summit on Food Security. WSFS 2009/2, Rome

    Google Scholar 

  • Peltonen-Sainio P, Jauhiainen L, Rajala A, Muurinen S (2009) Tiller traits of spring cereals under tiller-depressing long day conditions. Field Crops Res 113(1):82–89. doi:10.1016/j.fcr.2009.04.012

    Article  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc Lond B Biol Sci 360(1463):2021–2035. doi:10.1098/rstb.2005.1752

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocha M, Licausi F, Araujo WL, Nunes-Nesi A, Sodek L, Fernie AR, van Dongen JT (2010a) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152(3):1501–1513. doi:10.1104/pp.109.150045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha M, Sodek L, Licausi F, Hameed MW, Dornelas MC, van Dongen JT (2010b) Analysis of alanine aminotransferase in various organs of soybean (Glycine max) and in dependence of different nitrogen fertilisers during hypoxic stress. Amino Acids 39(4):1043–1053. doi:10.1007/s00726-010-0596-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt JG, Fincher GB, Matsumoto T, Takeda K, Komatsuda T (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625. doi:10.1038/ncomms11625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenov MA, Shewry PR (2011) Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Sci Rep 1:66. doi:10.1038/srep00066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6(7):722–732. doi:10.1111/j.1467-7652.2008.00351.x

    Article  CAS  PubMed  Google Scholar 

  • Snyman SJ, Hajari E, Watt MP, Lu Y, Kridl JC (2015) Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep 34(5):667–669. doi:10.1007/s00299-015-1768-y

    Article  CAS  PubMed  Google Scholar 

  • Son D, Sugiyama T (1992) Molecular cloning of an alanine aminotransferase from NAD-malic enzyme type C4 plant Panicum miliaceum. Plant Mol Biol 20(4):705–713

    Article  CAS  PubMed  Google Scholar 

  • Springer NM (2010) Isolation of plant DNA for PCR and genotyping using organic extraction and CTAB. Cold Spring Harb Protoc 11:5515 (Electronic)

    Google Scholar 

  • Stroeher VL, Boothe JG, Good AG (1995) Molecular cloning and expression of a turgor-responsive gene in Brassica napus. Plant Mol Biol 27(3):541–551

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Knaff DB (2005) Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosynth Res 83(2):191–217. doi:10.1007/s11120-004-3478-0

    Article  CAS  PubMed  Google Scholar 

  • Villegas D, Alfaro C, Ammar K, Cátedra MM, Crossa J, García del Moral LF, Royo C (2016) Daylength, temperature and solar radiation effects on the phenology and yield formation of spring durum wheat. J Agron Crop Sci 202(3):203–216. doi:10.1111/jac.12146

    Article  Google Scholar 

  • Wei H, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Wood AJ, Saneoka H, Rhodes D, Joly RJ, Goldsbrough PB (1996) Betaine aldehyde dehydrogenase in sorghum. Plant Physiol 110(4):1301–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182. doi:10.1146/annurev-arplant-042811-105532

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA 101(20):7833–7838. doi:10.1073/pnas.0402267101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Kim SR, Lee SK, Choi H, Jeon JS, An G (2015) Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm. Plant Sci 240:79–89. doi:10.1016/j.plantsci.2015.07.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PAP is grateful for scholarship support provided by the Channing B. and Katherine W. Baker Fund for Breeding and Genetics of Food and Feed Grains and the Nebraska Wheat Board. Additional funding provided by the University of Nebraska-Lincoln’s Center for Biotechnology, and Center for Plant Science Innovation. The authors would like to thank Samanatha Link, Pat Tenopir and Derek Rasmussen for plant care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Clemente.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña, P.A., Quach, T., Sato, S. et al. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase. Planta 246, 1097–1107 (2017). https://doi.org/10.1007/s00425-017-2753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2753-1

Keywords

Navigation