Skip to main content
Log in

Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The contribution of variations in coding regions or promoters to the changes in FAE1 expression levels have be quantified and compared in parallel by specifically designed swapping constructs.

FATTY ACID ELONGATION1 (FAE1) is a key gene in control of erucic acid synthesis in plant seeds. The expression of FAE1 genes in Brassica oleracea and Capsella rubella, representatives of high and low erucic acid species, respectively, was characterized to provide insight into the regulation of very long-chain fatty-acid biosynthesis in seeds. Virtually, no methylation was detected either in B. oleracea or in C. rubella, suggesting that modification of promoter methylation might not be a predominant mechanism. Swapping constructs were specifically designed to quantify and compare the contribution of variations in coding regions or promoters to the changes in FAE1 expression levels in parallel. A significantly higher fold change in erucic acid content was observed when swapping coding regions rather than when swapping promoters, indicating that the coding region is a major determinant of the catalytic power of β-ketoacyl-CoA synthase proteins. Common motifs have been proposed as essential for the preservation of basic gene expression patterns, such as seed-specific expression. However, the occurrence of variation in common cis-elements or the presence of species-specific cis-elements might be plausible mechanisms for changes in the expression levels in different organisms. In addition, conflicting observations in previous reports associated with FAE1 expression are discussed, and we suggest that caution should be taken when selecting a plant transformation vector and in interpreting the results obtained from vectors carrying the CaMV 35S promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DAF:

Days after flowering

FAE1:

FATTY ACID ELONGATION1

KCS:

β-Ketoacyl-CoA synthase

HEA:

High erucic acid

LEA:

Low erucic acid

VLCFA:

Very long-chain fatty acid

References

  • Bach L, Michaelson L, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham J, Beaudoin F, Napier J, Faure JD (2008) The plant very long chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad USA 105:14727–14731

    Article  CAS  Google Scholar 

  • Bäumlein H, Nagy I, Villarroel R, Inzé D, Wobus U (1992) Cis-analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene. Plant J 2:233–239

    PubMed  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95:1307–1327

    Article  CAS  PubMed  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona-Antoñanzas G, Tocher DR, Taggart JB, Leaver MJ (2013) An evolutionary perspective on Elovl5 fatty acid elongase: comparison of Northern pike and duplicated paralogs from Atlantic salmon. BMC Evol Biol 13:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiron H, Wilmer J, Lucas MO, Nesi N, Delseny M, Devic M, Roscoe TJ (2015) Regulation of FATTY ACID ELONGATION1 expression in embryonic and vascular tissues of Brassica napus. Plant Mol Biol 88:65–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung MH, Chen MK, Pan SM (2000) Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Res 9:471–476

    Article  CAS  PubMed  Google Scholar 

  • Downey R, Craig B (1964) Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). J Am Oil Chem 41:475–478

    Article  CAS  Google Scholar 

  • Ericson ML, Murén E, Gustavsson HO, Josefsson LG, Rask L (1991) Analysis of the promoter region of napin genes from Brassica napus demonstrates binding of nuclear protein in vitro to a conserved sequence motif. Eur J Biochem 197:741–746

    Article  CAS  PubMed  Google Scholar 

  • Facy S (2009) Investigation of highly regulated promoters for the production of recombinant proteins in plants. Queensland University of Technology, Queensland

    Google Scholar 

  • Fan LM, Zhang W, Chen JG, Taylor JP, Jones AM, Assmann SM (2008) Abscisic acid regulation of guard-cell K+ and anion channels in Gbeta- and RGS-deficient Arabidopsis lines. Proc Natl Acad Sci USA 105(24):8476–8481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fehling E, Mukherjee KD (1991) Acyl-CoA elongase from a higher-plant (Lunaria annua)—metabolic intermediates of very-long-chain acyl-CoA products and substrate-specificity. Biochim Biophys Acta 1082:239–246

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Somerville CR (1990) Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define fenes that control overlapping subsets of ABA responses. Plant Physiol 94:1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan EJ, Genger RK, Peacock WJ, Dennis ES (1998) DNA methylation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:223–247

    Article  CAS  PubMed  Google Scholar 

  • Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 cosegregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858

    Article  CAS  Google Scholar 

  • Ghanevati M, Jaworski JG (2001) Active-site residues of a plant membrane-bound fatty acid elongase beta-ketoacyl-CoA synthase, FAE1 KCS. Biochim Biophys Acta 1530:77–85

    Article  CAS  PubMed  Google Scholar 

  • Ghanevati M, Jaworski JG (2002) Engineering and mechanistic studies of the Arabidopsis FAE1 beta-ketoacyl-CoA synthase, FAE1 KCS. Eur J Biochem 269:3531–3539

    Article  CAS  PubMed  Google Scholar 

  • Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Article  CAS  PubMed  Google Scholar 

  • Guo HS, Zhang YM, Sun XQ, Li MM, Hang YY, Xue JY (2016) Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy. Mol Genet Genom 291:739–752

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han J, Lühs W, Sonntag K, Zähringer U, Borchardt DS, Wolter FP, Heinz E, Frentzen M (2001) Functional characterization of beta-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol 46:229–239

    Article  CAS  PubMed  Google Scholar 

  • James DW Jr, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis FATTY ACID ELONATION1 (FAE1) gene with maize transposon Activator. Plant Cell 7:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasinski S, Lecureuil A, Miquel M, Loudet O, Raffaele S, Froissard M, Guerche P (2012) Natural variation in seed very long chain fatty acid content is controlled by a new isoform of KCS18 in Arabidopsis thaliana. PLoS One 7:e49261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katavic V, Mietkiewska E, Barton DL, Giblin EM, Reed DW, Taylor DC (2002) Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem 269:5625–5631

    Article  CAS  PubMed  Google Scholar 

  • Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727

    Article  CAS  PubMed  Google Scholar 

  • Kunst L, Taylor DC, Underhill EW (1992) Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem 30:425–434

    CAS  Google Scholar 

  • Lassner MW, Lardizabal K, Metz JG (1996) A jojoba beta-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lechelt-Kunze C, Meissner RC, Drewes M, Tietjen K (2003) Flufenacet herbicide treatment phenocopies the fiddlehead mutant in Arabidopsis thaliana. Pest Manag Sci 59:847–856

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Yadav S, Singh R, Begum G, Suneja P, Singh M (2002) Correlation studies on oil content and fatty acid profile of some cruciferous species. Genet Resour Crop Evol 49:551–556

    Article  Google Scholar 

  • Mason G, Provero P, Vaira AM, Accotto GP (2002) Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol 2:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Mietkiewska E, Giblin EM, Wang S, Barton DL, Dirpaul J, Brost JM, Katavic V, Taylor DC (2004) Seed-specific heterologous expression of a nasturtium FAE gene in Arabidopsis results in a dramatic increase in the proportion of erucic acid. Plant Physiol 136:2665–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mietkiewska E, Brost JM, Giblin EM, Barton DL, Taylor DC (2007) A Teesdalia nudicaulis FAE1 complements the FAE1 mutation in transgenic Arabidopsis thaliana plants and shows a preference for elongating oleic acid to eicosenoic acid. Plant Sci 173:198–205

    Article  CAS  Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197–218

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton. (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127

    Article  CAS  Google Scholar 

  • Roscoe TJ, Lessire R, Puyaubert J, Renard M, Delseny M (2001) Mutations in the fatty acid elongation 1 gene are associated with a loss of beta-ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Lett 492:107–111

    Article  CAS  PubMed  Google Scholar 

  • Rossak M, Smith M, Kunst L (2001) Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol 46:717–725

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Sandhu JS, Webster CI, Gray JC (1998) A/T-rich sequences act as quantitative enhancers of gene expression in transgenic tobacco and potato plants. Plant Mol Biol 37:885–896

    Article  CAS  PubMed  Google Scholar 

  • Sun XQ, Pang H, Guo JL, Peng B, Bai MM, Hang YY (2011) Fatty acid analysis of the seed oil in a germplasm collection of 94 species in 58 genera of Brassicaceae. Chem Ind Forest Prod 31:46–54

    Google Scholar 

  • Sun XQ, Pang H, Li MM, Peng B, Guo HS, Yan QQ, Hang YY (2013) Evolutionary pattern of the FAE1 gene in Brassicaceae and its correlation with the erucic acid trait. PLoS One 8:e83535

    Article  PubMed  PubMed Central  Google Scholar 

  • Telias A, Lin-Wang K, Stevenson DE, Cooney JM, Hellens RP, Allan AC, Hoover EE, Bradeen JM (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:93–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian D, Araki H, Stahl E, Bergelson J, Kreitman M (2002) Signature of balancing selection in Arabidopsis. Proc Natl Acad Sci USA 99:11525–11530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Perry SE (2013) Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development. Plant Physiol 161:1251–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Wu Y, Xiao L, Li X, Lu C (2008) Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet 116:491–499

    Article  CAS  PubMed  Google Scholar 

  • Yan G, Li D, Cai M, Gao G, Chen B, Xu K, Li J, Li F, Wang N, Qiao J, Li H, Zhang T, Wu X (2015) Characterization of FAE1 in the zero erucic acid germplasm of Brassica rapa L. Breed Sci 65:257–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221:523–530

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Cheng B (2014) Transposable element insertion and epigenetic modification cause the multiallelic variation in the expression of FAE1 in Sinapis alba. Plant Cell 26:2648–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang Y, Wu S, Yang J, Liu H, Zhou Y (2012) A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theor Appl Genet 125:1697–1704

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31470448), Jiangsu Province Key Laboratory for Plant Ex Situ Conservation (QIAN201202), Project for Ability Improvement of Provincial Public Institutes (BM2015019) granted to X. Q. Sun, and the Jiangsu Key Laboratory for the Research and Uti1ization of Plant Resources (JSPKLB201510) granted to G. C. Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical statement

This work does not contain any study with human participants and/or animals, and fully complies with ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2017_2731_MOESM1_ESM.tif

Fig. S1 Sliding window analysis of the TA content in the promoters of eight Brassicaceae FAE1 orthologs. TA content was calculated in the sliding window analysis (window width: 50, step size: 10) in the promoter region starting from the site at position −1 relative to the start codon (TIFF 645 kb)

425_2017_2731_MOESM2_ESM.tif

Fig. S2 Bioinformatic analysis of the promoters of eight Brassicaceae FAE1 orthologs. Promoter sequences upstream of the ATG start codon of the FAE1 genes were retrieved from the plant genome database, and the promoter cis-elements (using the presented color code) were analyzed using PLANTCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) and PLACE (http://www.dna.affrc.go.jp/PLACE/) (TIFF 1282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Lei, Z., Xue, J. et al. Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella . Planta 246, 763–778 (2017). https://doi.org/10.1007/s00425-017-2731-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2731-7

Keywords

Navigation