Skip to main content

Advertisement

Log in

The role of peltate scales in desiccation tolerance of Pleopeltis polypodioides

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The extreme drought tolerance of the resurrection fern is in part the result of the dorsal scales that assist in water distribution and controlled desiccation.

We studied the effect of peltate scales on water uptake and loss of the desiccation-tolerant epiphytic fern Pleopeltis polypodioides using optical and FTIR microscopy and staining with calcofluor, solophenyl flavine7GFE, and Ruthenium Red. We provide information on structure, property, and function of the scales by measuring water uptake and dehydration, contact angles, and metabolic activity. Peltate scales mainly contain cellulose, xylogalactans, and pectin. Water is absorbed from the center of scales, and the overlapping arrangement of scales facilitates surface spreading of water. Intact fronds hydrated fully within 5 h of imbibition of the apical pinna, without scales water uptake stopped after 1 h. Hydration rates via rhizomes followed a longer time course but also improved in the presence of scales. Fronds with and without scales lost half of their water content in 15 or 4 h, respectively. The overall metabolism of rapidly dehydrated fronds was significantly reduced compared with slowly dehydrated fronds. Thus, water management and metabolism of Pleopeltis are dependent on surface properties determined by peltate scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

SPF:

Solophenyl flavine

FTIR:

Fourier transform infrared spectroscopy

RR:

Ruthenium red

References

  • Alpert P, Oliver M (2002) Drying without dying. In: Black M, Pritchard H (eds) Desiccation and survival in plants. CAB International, Wallingford, pp 3–43

    Chapter  Google Scholar 

  • Anderson C, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartels D (2005) Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr Comp Biol 45:696–701

    Article  CAS  PubMed  Google Scholar 

  • Benzing D (1976) Bromeliad trichomes: structure, function, and ecological significance. Selbyana 1:330–348

    Google Scholar 

  • Benzing DH, Henderson K, Kessel B, Sulak J (1976) The absorptive capacities of bromeliad trichomes. Am J Bot 63:1009–1014

    Article  Google Scholar 

  • Blancaflor E, Hasenstein K (1993) Organization of cortical microtubules in graviresponding maize roots. Planta 191:231–237

    CAS  PubMed  Google Scholar 

  • Boom A, Sinninge Damsté JS, de Leeuw JW (2005) Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants. Org Geochem 36:595–601

    Article  CAS  Google Scholar 

  • Burkhardt J, Basi S, Pariyar S, Hunsche M (2012) Stomatal penetration by aqueous solutions—an update involving leaf surface particles. New Phytol 196:774–787

    Article  CAS  PubMed  Google Scholar 

  • Camargo M, Marenco R (2011) Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. Acta Amazonica 41:205–211

    Article  Google Scholar 

  • Cruz de Carvalho R, Catalá M, Marques da Silva J, Branquinho C, Barreno E (2012) The impact of dehydration rate on the production and cellular location of reactive oxygen species in an aquatic moss. Ann Bot 110:1007–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dybing C, Currier H (1961) Foliar penetration by chemicals. Plant Physiol 36:169–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ensikat H, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011) Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2:152–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farooq M, Hussain M, Wahid A, Siddique K (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin Heidelberg, pp 1–33

    Chapter  Google Scholar 

  • Farrant J, Lehner A, Cooper K, Wiswedel S (2009) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57:65–79

    Article  CAS  PubMed  Google Scholar 

  • Fernández V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of knowledge and perspectives of foliar fertilization. Crit Rev Plant Sci 28:36–68

    Article  Google Scholar 

  • Fernández V, Sancho-Knapik D, Paula Guzmán, Javier Peguero-Pina J, Gil L, Karabourniotis G, Khayet M, Fasseas C, Alejandro Heredia-Guerrero J, Antonio Heredia, Eustaquio G-P (2014) Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age. Plant Physiol 166:168–180

    Article  PubMed Central  PubMed  Google Scholar 

  • Frisch H (1991) Fundamentals of membrane transport. Polym J 23:445–456

    Article  CAS  Google Scholar 

  • Gaff D (1977) Desiccation tolerant vascular plants of Southern Africa. Oceologia (Berl.) 31:95–109

    Article  Google Scholar 

  • Georgieva K, Doncheva S, Mihailova G, Petkova S (2012) Response of sun- and shade-adapted plants of Haberlea rhodopensis to desiccation. Plant Growth Regul 67:121–132

    Article  CAS  Google Scholar 

  • Guzman-Delgado P, Graca J, Cabral V, Gil L, Fernandez V (2016) The presence of cutan limits the interpretation of cuticular chemistry and structure: Ficus elastica leaf as an example. Physiol Plant 157:205–220

    Article  CAS  PubMed  Google Scholar 

  • Haberlandt G (1914) The dermal system in physiological plant anatomy. MacMillan, London

    Google Scholar 

  • Harholt J, Suttangkakul A, Scheller H (2010) Biosynthesis of pectin. Plant Physiol 153:384–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hauser M (2014) Molecular basis of natural variation and environmental control of trichome patterning. Front Plant Sci 5:1–7

    Article  Google Scholar 

  • Helseth L, Fischer T (2005) Physical mechanisms of rehydration in Polypodium polypodioides, a resurrection plant. Phys Rev E Stat Nonlinear Soft Matter Phys 71:061903

    Article  CAS  Google Scholar 

  • Heredia-Guerrero JA, Benitez JJ, Dominguez E, Bayer IS, Cingolani R, Athanassiou A, Heredia A (2014) Infrared and Raman spectroscopic features of plant cuticles: a review. Front Plant Sci 5:305

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson D (1921) Polypodium vulgare as an epiphyte. Bot Gaz 72:237–244

    Article  Google Scholar 

  • Kappen L, Valladares F (2007) Opportunistic growth and desiccation tolerance: the ecological success of poikilohydrous autotrophs. In: Pugnaire F, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, New York, pp 10–80

    Google Scholar 

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832

    Article  CAS  Google Scholar 

  • Koch K, Bhushan B, Barthlott W (2009) Multifunctional surface structures of plants: an inspiration for biomimetics. Prog Mater Sci 54:137–178

    Article  CAS  Google Scholar 

  • Larson D (1981) Differential wetting in some lichens and mosses: the role of morphology. Bryologist 84:1–15

    Article  Google Scholar 

  • Layton B, Boyd M, Tripepi MS, Bitonti BM, Dollahon MNR, Balsamo RA (2010) Dehydration-induced expression of a 31-kDa dehydrin in Polypodium polypodioides (Polypodiaceae) may enable large, reversible deformation of cell walls. Am J Bot 97:535–544

    Article  CAS  PubMed  Google Scholar 

  • Lewis A, Harnden V, Tyree M (1994) Collapse of water-stress emboli in the tracheids of Thuja occidentalis L. Plant Physiol 106:1639–1646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Limm E, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oceologia 161:449–459

    Article  Google Scholar 

  • McCleery E (1907) Stellate hairs and peltate scales of Ohio plants. Ohio Nat 7:51–56

    Google Scholar 

  • Müller L, Starnecker G, Winkler S (1981a) A contribution to the ecology of epiphytic ferns from southern Brazil. I. Water absorbing trichomes. Flora 171:55–63

    Google Scholar 

  • Müller L, Starnecker G, Winkler S (1981b) Zur Ökologie epiphytischer Farne in Südbrasilien—I. Saugschuppen. Flora 171:55–63

    Google Scholar 

  • O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426

    Article  PubMed  Google Scholar 

  • Oliver M, Velten J, Mishler B (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Pampurova S, Van Dijck P (2014) The desiccation tolerant secrets of Selaginella lepidophylla: what we have learned so far? Plant Physiol Biochem 80:285–290

    Article  CAS  PubMed  Google Scholar 

  • Papini A, Tani G, Di Falco P, Brigjigna L (2010) The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome. Flora 205:94–100

    Article  Google Scholar 

  • Pesacreta T, Hasenstein K (1999) The internal cuticle of Cirsium horridulum (Asteraceae) leaves. Am J Bot 86:923–928

    Article  CAS  PubMed  Google Scholar 

  • Pessin L (1924) A physiological and anatomical study of the leaves of Polypodium polypodioides. Am J Bot 11:370–381

    Article  Google Scholar 

  • Pierce S (2007) The jeweled armor of Tillandsia—multifaceted or elongated trichomes provide photoprotection. Aliso 23:44–52

    Article  Google Scholar 

  • Pierce S, Maxwell K, Griffiths H, Winter K (2001) Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. Am J Bot 88:1371–1389

    Article  CAS  PubMed  Google Scholar 

  • Porembski S (2007) Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Rev Brasil Bot 30:579–586

    Article  Google Scholar 

  • Proctor M, Pence V (2002) Vegetative tissues: bryophytes, vascular resurrection plants and vegetative propagules. In: Black M, Pritchard H (eds) Desiccation and survical in plants. CAB International, Wallingford, pp 207–237

    Chapter  Google Scholar 

  • Rensburg L, Peacock J, Krüger G (1999) Boundary layer, stomatal geometry and -spacing, in relation to drought tolerance in four Nicotiana tabacum L. cultivars. South Afr J Plant Soil 16:44–49

    Article  Google Scholar 

  • Retamales H, Scharaschkin T (2014) A staining protocol for identifying secondary compounds in Myrtaceae. Appl Plant Sci 2:1400063

    Article  Google Scholar 

  • Reynolds T, Bewley J (1993) Abscisic acid enhances the ability of the desiccation-tolerant fern Polypodium virginianum to withstand drying. J Exp Bot 44:1771–1779

    Article  CAS  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Rui Y, Anderson C (2016) Functional analysis of cellulose and xyloglucan in the walls of stomatal guard cells of Arabidopsis. Plant Physiol 170:1398–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rundel P (1982) Water uptake by organs other than roots. In: Lange O, Nobel P, Osmond C (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 111–134

    Google Scholar 

  • Schneider P, Schmitt J (2011) Composition, community structure and vertical distribution of epiphytic ferns on Alsophila setosa Kaulf., in a Semideciduous Seasonal Forest, Morro Reuter, RS, Brazil. Acta Bot Bras 25:557–565

    Article  Google Scholar 

  • Schönherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Biol 57:2471–2491

    Google Scholar 

  • Schönherr J, Bukovac M (1972) Penetration of stomata by liquids. Dependence on surface tension, wettability, and stomatal morphology. Plant Physiol 49:813–819

    Article  PubMed Central  PubMed  Google Scholar 

  • Shepherd T, Griffiths D (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    Article  CAS  PubMed  Google Scholar 

  • Sperry J, Tyree M (1988) Mechanism of water stress-induced xylem embolism. Plant Physiol 88:581–587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stuart T (1968) Revival of respiration and photosynthesis in dried leaves of Polypodium polypodioides. Planta 83:185–206

    Article  CAS  PubMed  Google Scholar 

  • Synytsya A (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106

    Article  CAS  Google Scholar 

  • Toldi O, Tuba Z, Scott P (2009) Vegetative desiccation tolerance: is it a goldmine for bioengineering crops? Plant Sci 176:187–199

    Article  CAS  Google Scholar 

  • Tsutsumi C, Kato M (2008) Morphology and evolution of epiphytic Davalliaceae scales. Botany 86:1393–1403

    Article  Google Scholar 

  • Varadarajan G, Gilmartin A (1987) Foliar Scales of the subfamily Pitcainioideae (Bromeliaceae). Syst Bot 12:562–571

    Article  Google Scholar 

  • Voytena A, Minardi B, Barufi J, Santos M, Randi Á (2014) Pleopeltis pleopeltifolia (Polypodiopsida, Polypodiaceae), a poikilochlorophyllous desiccation-tolerant fern: anatomical, biochemical and physiological responses during water stress. Aust J Bot 62:647–656

    Article  Google Scholar 

  • Wallace I, Anderson C (2012) Small molecule probes for plant cell wall polysaccharide imaging. Front Plant Sci 3:1–8

    Article  Google Scholar 

  • Wang H, Shi H, Li Y, Wang Y (2014) The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion. PLoS One 9:e107062

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson RH, Smith AC, Waldron KW (2000) The mechanical prospects and molecular dynamics of plant cell wall polysaccharides studied by fourier-transform infrared spectroscopy. Plant Physiol 124:397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zenkteler E, Jędrzejczyk I (2012) Morphology and anatomy of the rhizome of Polypodium × mantoniae Rothm. In: Gola E, Szczęśniak E (eds) Genus Polypodium L. in Poland. Polish Botanical Society, Wroclaw, pp 27–38

    Google Scholar 

Download references

Acknowledgements

We thank Dr. T. Pesacreta for providing solophenyl flavine 7GFE 500 and Dr. O. Kizilkaya for his help with FTIR spectroscopy. This research was partially supported by NASA grants NNX10AP91G and NNX13AN05A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl H. Hasenstein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1195 kb)

Online Resource Video S1 Spreading of calcofluor solution on the dorsal surface of P. polypodioides. During the first 30 min of imbibition, the dye spreads from the apical pinnae towards rachis and the stipe. During the course of spreading, the dye strongly bounds to the peltate scales. Images were taken at 1 min intervals for 30 min (MP4 2471 kb)

Online Resource Video S2 Uptake of water through the central disc of the scale. Images were taken at 2 s intervals (MP4 960 kb)

Online Resource Video S3 Water movement underneath the scales and uptake via stalk of scale. Images that were taken at 2 s intervals (MP4 1129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, S.P., Hasenstein, K.H. The role of peltate scales in desiccation tolerance of Pleopeltis polypodioides . Planta 245, 207–220 (2017). https://doi.org/10.1007/s00425-016-2631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2631-2

Keywords

Navigation