Skip to main content
Log in

Genetic variation and association mapping of waterlogging tolerance in chrysanthemum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Forty-five molecular markers were detected significantly associated with chrysanthemum’ waterlogging tolerance, and four favorable parental lines were identified as potential donors for improving waterlogging tolerance in chrysanthemum.

The productivity of chrysanthemum is downgraded by waterlogging soils, which has driven a search for germplasm showing an enhanced level of waterlogging tolerance (WT). As yet little is known regarding the mode of inheritance of WT in chrysanthemum. The study set out to characterize the extent of genetic variation for WT represented in a collection of one hundred chrysanthemum accessions by testing them under both greenhouse and field conditions. A membership function value of waterlogging (MFVW), which integrated a wilting index, a chlorosis score and the proportion of dead leaf in waterlogged plants, was used as a measure of WT. The variation for MFVW among plants grown in the greenhouse (two experiments) was generally higher than that generated in field-grown (one experiment) plants. The MFVW broad sense heritability was 0.82, and the phenotypic coefficient of variation (31.8 %) was larger than the genetic one (28.8 %). Association mapping (AM) identified 45 markers related to WT: 25 by applying the general linear model (GLM) + principal component (PC) model, 16 by applying the mixed linear model (MLM), 31 by applying the MLM + Q matrix model and 12 by applying the MLM + PC model. Of the associated markers, eight and two were predictive in two and three experiments within all models, respectively; the proportion of the phenotypic variance explained by the eight associations ranged from 6.3 to 16.4 %. On the basis of their harboring all four of the leading markers E2M16-2, SSR150-6, E19M16-1 and E10M10-12, the varieties ‘Nannong Xuefeng’, ‘Qx097’, ‘Nannong Xunzhang’ and ‘Finch’ were identified as potential donors for future improvement of WT in chrysanthemum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AM:

Association mapping

GLM:

General linear model

MFVW:

Membership function value of waterlogging

MLM:

Mixed linear model

PC:

Principal component

SSR:

Simple sequence repeats

WT:

Waterlogging tolerance

References

  • Abbasi Z, Majidi MM, Arzani A, Rajabi A, Mashayekhi P, Bocianowski J (2015) Association of SSR markers and morpho-physiological traits associated with salinity tolerance in sugar beet (Beta vulgaris L.). Euphytica 205(3):785–797

    Article  CAS  Google Scholar 

  • Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH (2010) Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. J Biosci 35(1):49–62

    Article  CAS  PubMed  Google Scholar 

  • Anderson NO, Ascher PD (2000) Fertility changes in inbred families of self-incompatible chrysanthemum (Dendranthema grandiflora). J Am Soc Hortic Sci 125(5):619–625

    Google Scholar 

  • Banerjee N, Siraree A, Yadav S, Kumar S, Singh J, Pandey DK, Singh RK (2015) Marker-trait association study for sucrose and yield contributing traits in sugarcane (Saccharum spp. hybrid). Euphytica 205(1):185–201

    Article  CAS  Google Scholar 

  • Boru G, Ginkel MV, Kronstad W, Boersma L (2001) Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica 117(2):91–98

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46(3):1323–1330

    Article  Google Scholar 

  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence–a genomics approach. Plant Biotechnol J 1(1):3–22

    Article  CAS  PubMed  Google Scholar 

  • Cardoso JA, Jiménez J, Rincón J, Guevara E, Van der Hoek R, Jarvis A, Peters M, Miles J, Ayarza M, Cajas S (2013) Advances in improving tolerance to waterlogging in Brachiaria grasses. Trop Grasslands-Forrajes Trop 1:197–201

    Article  Google Scholar 

  • Colmer T, Voesenek L (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36(8):665–681

    Article  Google Scholar 

  • Cornelious B, Chen P, Chen Y, De Leon N, Shannon JG, Wang D (2005) Identification of QTLs underlying water-logging tolerance in soybean. Mol Breed 16(2):103–112

    Article  Google Scholar 

  • Dang X, Thi TGT, Dong G, Wang H, Edzei WM, Hong D (2014) Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta 239:1309–1319

    Article  CAS  PubMed  Google Scholar 

  • Deren CW, Snyder GH, Miller JD, Porter PS (1991) Screening for and heritability of flood-tolerance in the Florida (CP) sugarcane breeding population. Euphytica 56(2):155–160

    Article  Google Scholar 

  • Forcada CF, Velasco L, Company RS, Martí ÁF (2015) Association mapping for kernel phytosterol content in almond. Front Plant Sci 6:530

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620

    Article  Google Scholar 

  • Irzykowska L, Werner M, Bocianowski J, Karolewski Z, Frużyńska-Jóźwiak D (2013) Genetic variation of horse chestnut and red horse chestnut and trees susceptibility to Erysiphe flexuosa and Cameraria ohridella. Biologia 68(5):851–860

    Article  Google Scholar 

  • Kan G, Zhang W, Yang W, Ma D, Zhang D, Hao D, Hu Z, Yu D (2015) Association mapping of soybean seed germination under salt stress. Mol Genet Genomics 290(6):2147–2162

    Article  CAS  PubMed  Google Scholar 

  • Kertho A, Mamidi S, Bonman JM, McClean PE, Acevedo M (2015) Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS One 10(6):e0129580

    Article  PubMed  PubMed Central  Google Scholar 

  • Klie M, Menz I, Linde M, Debener T (2016) Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum. Mol Genet Genomics 291(2):957–969

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Pal M, Joshi R, Sairam RK (2013) Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiol Mol Biol Plants 19(2):209–220

  • Li H, Vaillancourt R, Mendham NJ, Zhou M (2008) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genom 9:401

    Article  Google Scholar 

  • Li R, Wang C, Dai S, Luo X, Li B, Zhu J, Lu J, Liu Q (2012) The association analysis of phenotypic traits with SRAP markers in chrysanthemum. Sci Agric Sin 45:1355–1364

    CAS  Google Scholar 

  • Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Mol Genet Genomics 291(3):1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005a) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142(1):33–42

    Article  Google Scholar 

  • Mano Y, Omori F, Muraki M, Takamizo T (2005b) QTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays L.) seedlings. Breed Sci 55(3):343–347

  • Martin AY, Chen X, Liang G, Gu M, Xu C (2008) Inheritance of waterlogging tolerance in cucumber (Cucumis sativus L.). Euphytica 162(1):145–154

    Article  Google Scholar 

  • Peng H, Zhang F, Jiang J, Chen S, Fang W, Guan Z, Chen F (2015) Identification of quantitative trait loci for branching traits of spray cut chrysanthemum. Euphytica 202(3):385–392

    Article  CAS  Google Scholar 

  • Phung NTP, Mai CD, Hoang GT, Truong HTM, Lavarenne J, Gonin M, Nguyen KL, Ha TT, Do VN, Gantet P, Courtois B (2016) Genome-wide association mapping for root traits in a panel of rice accessions from Vietnam. BMC Plant Biol 16:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhine MD, Stevens G, Shannon G, Wrather A, Sleper D (2010) Yield and nutritional responses to waterlogging of soybean cultivars. Irrigation Sci 28(2):135–142

    Article  Google Scholar 

  • Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190(2):289–298

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhao T, Gai J (2010) Inheritance and QTL mapping of waterlogging tolerance at seedling stage of soybean. Acta Agron Sin 36(4):590–595

    Article  CAS  Google Scholar 

  • Visioni A, Tondelli A, Francia E, Pswarayi A, Malosetti M, Russell J, Thomas W, Waugh R, Pecchioni N, Romagosa I, Comadran J (2013) Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.). BMC Genom 14(1):424

    Article  CAS  Google Scholar 

  • Wang L, Ge H, Hao C, Dong Y, Zhang X (2012) Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One 7(2):e29432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang C, Jiang J, Chen S, Fang W, Teng N, Guan Z, Liao Y, Chen F (2013) Interspecific hybridization between Chrysanthemum morifolium ‘Nannong yinshan’and C. zawadskii and identification of waterlogging tolerance of their hybrid. Sci Agric Sin 46(20):4328–4335

  • Wang C, Zhang F, Guan Z, Chen S, Jiang J, Fang W, Chen F (2014) Inheritance and molecular markers for aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.). Sci Hortic 180:220–226

    Article  CAS  Google Scholar 

  • Wu Q, Zou Y, Huang Y (2013) The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol 6(1):37–43

    Article  Google Scholar 

  • Yang X, Guo Y, Yan J, Zhang J, Song T, Rocheford T, Li J (2010) Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor Appl Genet 120(3):665–678

    Article  CAS  PubMed  Google Scholar 

  • Yin D, Chen S, Chen F, Guan Z, Fang W (2009a) Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot 67(1):87–93

    Article  CAS  Google Scholar 

  • Yin D, Guan Z, Chen S, Chen F (2009b) Establishment of evaluation system for waterlogging tolerance and identification of waterlogging tolerance in Chrysanthemum morifolium and its related genera plants. J Plant Genet Resour 10(3):399–404

    Google Scholar 

  • Yin D, Zhang Z, Luo H (2012) Anatomical responses to waterlogging in Chrysanthemum zawadskii. Sci Hortic 146:86–91

    Article  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Broh BI, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet 38(2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Bai G, Luo N, Chen Z, Liu S, Liu J, Warnke SE, Jiang YW (2011) Association of simple sequence repeat (SSR) markers with submergence tolerance in diverse populations of perennial ryegrass. Plant Sci 180(2):391–398

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Chen Y, Li FT (2011) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breed 27(1):11–23

    Article  CAS  Google Scholar 

  • Zhang F, Jiang J, Chen S, Chen F, Fang W (2012a) Detection of quantitative trait loci for leaf traits in chrysanthemum. J Hortic Sci Biotechnol 87(6):613–618

    Article  Google Scholar 

  • Zhang F, Jiang J, Chen S, Chen F, Fang W (2012b) Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Mol Breed 30(2):1027–1036

    Article  Google Scholar 

  • Zhang F, Chen S, Jiang J, Guan Z, Fang W, Chen F (2013a) Genetic mapping of quantitative trait loci underlying flowering time in chrysanthemum (Chrysanthemum morifolium). PLoS One 8(12):e83023

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Tang B, Yu F, Li L, Wang M, Xue Y, Zhang Z, Yan J, Yue B, Zheng Y (2013b) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Rep 31(3):594–606

    Article  CAS  Google Scholar 

  • Zhang X, Zhou G, Shabala S, Koutoulis A, Shabala L, Johnson P, Li CD, Zhou MX (2016) Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance. Theor Appl Genet 129(6):1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Wang J, Zhao H, Liu H, Sun J, Guo L, Zou D (2015) Genetic structure, linkage disequilibrium and association mapping of salt tolerance in japonica rice germplasm at the seedling stage. Mol Breed 35(7):1–16

    Article  Google Scholar 

  • Zhou M, Li H, Mendham NJ (2007) Combining ability of waterlogging tolerance in barley. Crop Sci 47(1):278–284

    Article  Google Scholar 

  • Zou X, Hu W, Zeng L, Cheng Y, Xu M, Zhang X (2014) A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny. PLoS One 9(3):e89731

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to anonymous reviewers and editor for their constructive comments and suggestion that significantly improved the presentation of this manuscript. This work was supported by the grant from the National Natural Science Foundation of China (Grant nos. 31425022 and 31272196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1 Frequency distribution of WT classification grades in each of the three experiments (TIFF 55 kb)

425_2016_2583_MOESM2_ESM.tif

Fig. S2 The phenotype of six of the entries in EXP.1. The images were taken after ten days of flooding. CK, non-stressed control; T, flooded plants (TIFF 1401 kb)

425_2016_2583_MOESM3_ESM.tif

Fig. S3 The structure of the germplasm panel (K = 2). a Means of log likelihoods and their standard deviations. b △K values as a function of K. c each bar represents a single accession, and the colored portions of the bar represents the proportional contribution of each of the two subpopulations to a given entry. Entries with a > 60 % contribution were classified as either Pop1 (green) or Pop 2 (red) (TIFF 340 kb)

Fig. S4 The distribution of pair-wise kinship coefficients in the AM germplasm panel (TIFF 66 kb)

425_2016_2583_MOESM5_ESM.tif

Fig. S5 Quantile–quantile (Q–Q) probability plots for wilting index (WI), chlorosis Score and proportion of dead leaf (PDL) obtained from the application of six AM models. The models tested were GLM (a), GLM + Q (b), GLM + PC (c), MLM (d), MLM + Q (e) and MLM + PC (f). Each dot represents a marker (TIFF 1925 kb)

Supplementary material 6 (DOCX 29 kb)

Supplementary material 7 (DOCX 14 kb)

Supplementary material 8 (DOCX 14 kb)

Supplementary material 9 (DOCX 13 kb)

Supplementary material 10 (XLSX 11 kb)

Supplementary material 11 (XLSX 27 kb)

Supplementary material 12 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Zhang, F., Li, P. et al. Genetic variation and association mapping of waterlogging tolerance in chrysanthemum. Planta 244, 1241–1252 (2016). https://doi.org/10.1007/s00425-016-2583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2583-6

Keywords

Navigation