Skip to main content
Log in

A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity.

Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings. Two of these cues, light and gravity, play a substantial role in plant orientation and directed growth movements (tropisms). However, very little is currently known about the interaction between light- (phototropic) and gravity (gravitropic)-mediated growth responses. Utilizing the European Modular Cultivation System on board the International Space Station, we investigated the interaction between phototropic and gravitropic responses in three Arabidopsis thaliana genotypes, Landsberg wild type, as well as mutants of phytochrome A and phytochrome B. Onboard centrifuges were used to create a fractional gravity gradient ranging from reduced gravity up to 1g. A novel positive blue-light phototropic response of roots was observed during conditions of microgravity, and this response was attenuated at 0.1g. In addition, a red-light pretreatment of plants enhanced the magnitude of positive phototropic curvature of roots in response to blue illumination. In addition, a positive phototropic response of roots was observed when exposed to red light, and a decrease in response was gradual and correlated with the increase in gravity. The positive red-light phototropic curvature of hypocotyls when exposed to red light was also confirmed. Both red-light and blue-light phototropic responses were also shown to be affected by directional light intensity. To our knowledge, this is the first characterization of a positive blue-light phototropic response in Arabidopsis roots, as well as the first description of the relationship between these phototropic responses in fractional or reduced gravities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EMCS:

European Modular Cultivation System

References

  • Benjamins R, Ampudia CSG, Hooykaas PJ, Offringa R (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol 132:1623–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Briggs WR (1964) Phototropism in higher plants. In: Giese AC (ed) Photophysiology: general principles; action of light on plants, vol 1. Academic Press, New York, London, pp 223–271

    Chapter  Google Scholar 

  • Briggs WR (2014) Phootropism: some history, some puzzles, and a look ahead. Plant Physiol 164:13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinckmann E (2005) ESA hardware for plant research on the International Space Station. Adv Space Res 36:1162–1166

    Article  Google Scholar 

  • Brinckmann E, Schiller P (2002) Experiments with small animals in BIOLAB and EMCS on the International Space Station. Adv Space Res 30:809–814

    Article  CAS  PubMed  Google Scholar 

  • Brown BA, Jenkins GI (2008) UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol 146:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunsen R, Roscoe HE (1863) Photo-chemical researches, part V. On the direct measurement of the chemical action of sunlight. Philos Trans R Soc Lond 153:139–160

    Article  Google Scholar 

  • Chen R, Rosen E, Masson PH (1999) Gravitropism in higher plants. Plant Physiol 120:343–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci USA 96:8779–8783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM, Blackwood L, Petersen J, Sullivan S (2014) Plant flavoprotein photoreceptors. Plant Cell Physiol 56:401–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Correll MJ, Kiss JZ (2002) Interactions between gravitropism and phototropism in plants. J Plant Growth Regul 21:89–101

    Article  CAS  PubMed  Google Scholar 

  • Correll MJ, Kiss JZ (2005) The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol 46:317–323

    Article  CAS  PubMed  Google Scholar 

  • Correll MJ, Coveney KM, Raines SV, Mullen JL, Hangarter RP, Kiss JZ (2003) Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots. Adv Space Res 31:2203–2210

    Article  CAS  PubMed  Google Scholar 

  • Correll MJ, Pyle TP, Millar KD, Sun Y, Yao J, Edelmann RE, Kiss JZ (2013) Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238:519–533

    Article  CAS  PubMed  Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. John Murray, London

    Book  Google Scholar 

  • Gilroy S, Bethke PC, Jones RL (1993) Calcium homeostasis in plants. J Cell Sci 106:453–461

    CAS  PubMed  Google Scholar 

  • Goyal A, Szarzynska B, Fankhauser C (2013) Phototropism: at the crossroads of light-signaling pathways. Trends Plant Sci 18:393–401

    Article  CAS  PubMed  Google Scholar 

  • Hopkins JA, Kiss JZ (2012) Phototropism and gravitropism in transgenic lines of Arabidopsis altered in the phytochrome pathway. Physiol Plant 145:461–473

    Article  CAS  PubMed  Google Scholar 

  • Janoudi A, Poff KL (1990) A common fluence threshold for first positive and second positive phototropism in Arabidopsis thaliana. Plant Physiol 94:1605–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman PB, Song I, Pharis RP (1987) Gravity perception and response mechanism in graviresponding cereal grass shoots. In: Purohit SS (ed) Hormonal regulation of plant growth and development. Springer, Netherlands, pp 189–200

    Chapter  Google Scholar 

  • Kiss JZ (1994) Negative phototropism in young gametophytes of the fern Schizaea pusilla. Plant Cell Environ 17:1339–1343

    Article  Google Scholar 

  • Kiss JZ (2000) Mechanisms of the early phases of plant gravitropism. Crit Rev Plant Sci 19:551–573

    Article  CAS  PubMed  Google Scholar 

  • Kiss JZ (2007) Where’s the water? Hydrotropism in plants. Proc Natl Acad Sci USA 104:4247–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss JZ (2014) Plant biology in reduced gravity on the Moon and Mars. Plant Biol 16:12–17

    Article  PubMed  Google Scholar 

  • Kiss JZ (2015) Conducting plant experiments in space. Methods Mol Biol 1309:255–283

    Article  PubMed  Google Scholar 

  • Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131:1411–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss JZ, Kumar P, Millar KD, Edelmann RE, Correll MJ (2009) Operations of a spaceflight experiment to investigate plant tropisms. Adv Space Res 44:879–886

    Article  Google Scholar 

  • Kiss JZ, Millar KD, Edelmann RE (2012) Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta 236:635–645

    Article  CAS  PubMed  Google Scholar 

  • Kiss JZ, Aanes G, Schiefloe M, Coelho LH, Millar KD, Edelmann RE (2014) Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System. Adv Space Res 53:818–827

    Article  Google Scholar 

  • Kumar NS, Stevens MHH, Kiss JZ (2008) Plastid movement in statocytes of the arg1 (altered response to gravity) mutant. Am J Bot 95:177–184

    Article  Google Scholar 

  • Kutschera U, Briggs WR (2012) Root phototropism: from dogma to the mechanism of blue light perception. Planta 235:443–452

    Article  CAS  PubMed  Google Scholar 

  • Kutschera U, Briggs WR (2016) Phototropic solar tracking in sunflower plants: an integrative perspective. Ann Bot 117:1–8

    Article  PubMed  Google Scholar 

  • Lariguet P, Fankhauser C (2004) Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J 40:826–834

    Article  CAS  PubMed  Google Scholar 

  • Laxmi A, Pan J, Morsy M, Chen R (2008) Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One 3:e1510

    Article  PubMed  PubMed Central  Google Scholar 

  • Li FW, Mathews S (2016) Evolutionary aspects of plant photoreceptors. J Plant Res 129:115–122

    Article  CAS  PubMed  Google Scholar 

  • Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR (2014) Phototropism: growing towards an understanding of plant movement. Plant Cell 26:38–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Juez E, Dillon E, Magyar Z, Khan S, Hazeldine S, de Jager SM, Murray JA, Beemster GT, Bögre L, Shanahan H (2008) Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. Plant Cell 20:947–968

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandoli DF, Briggs WR (1984) Fiber optics in plants. Sci Am 251:90–98

    Article  Google Scholar 

  • Millar KD, Kumar P, Correll MJ, Mullen JL, Hangarter RP, Edelmann RE, Kiss JZ (2010) A novel phototropic response to red light is revealed in microgravity. New Phytol 186:648–656

    Article  PubMed  Google Scholar 

  • Mo M, Yokawa K, Wan Y, Baluška F (2015) How and why do root apices sense light under the soil surface?. Front Plant Sci 6:775. doi:10.3389/fpls.2015.00775

    Google Scholar 

  • Molas ML, Kiss JZ (2008) PKS1 plays a role in red-light-based positive phototropism in roots. Plant Cell Environ 31:842–849

    Article  CAS  PubMed  Google Scholar 

  • Moni A, Lee AY, Briggs W, Han IS (2015) The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation. Plant Biol 17:34–40

    Article  CAS  PubMed  Google Scholar 

  • Neef M, Ecke M, Hampp R (2015) Real-time recording of cytosolic calcium levels in Arabidopsis thaliana cell cultures during parabolic flights. Microgravity Sci Tec 27:305–312

    Article  CAS  Google Scholar 

  • Ovid (8 AD) (2008) Metamorphosis. Oxford University Press, Oxford

    Google Scholar 

  • Poovaiah B, Reddy A, Leopold AC (1987) Calcium messenger system in plants. Crit Rev Plant Sci 6:47–103

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Haga K (2012) Molecular genetic analysis of phototropism in Arabidopsis. Plant Cell Physiol 53:1517–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih H-W, DePew CL, Miller ND, Monshausen GB (2015) The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr Biol 25:3119–3125

    Article  CAS  PubMed  Google Scholar 

  • Silva-Navas J, Moreno-Risueno MA, Manzano C, Pallero-Baena M, Navarro-Neila S, Téllez-Robledo B, Garcia-Mina JM, Baigorri R, Gallego FJ, Pozo JC (2015) D-Root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant J 84:244–255

    Article  CAS  PubMed  Google Scholar 

  • Sullivan S, Hart JE, Rasch P, Walker CH, Christie JM (2016) Phytochrome A mediates blue-light enhancement of second-positive phototropism in Arabidopsis. Front Plant Sci 7:290. doi:10.3389/fpls.2014.00563

    Article  PubMed  PubMed Central  Google Scholar 

  • Tester M, Morris C (1987) The penetration of light through soil. Plant, Cell Environ 10:281–286

    Article  Google Scholar 

  • Toyota M, Furuichi T, Sokabe M, Tatsumi H (2013) Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights. Plant Physiol 163:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbrink JP, Kiss JZ (2016) Space, the final frontier: a critical review of recent experiments performed in microgravity. Plant Sci 243:115–119

    Article  CAS  PubMed  Google Scholar 

  • Vandenbrink JP, Brown EA, Harmer SL, Blackman BK (2014a) Turning heads: the biology of solar tracking in sunflower. Plant Sci 224:20–26

    Article  CAS  PubMed  Google Scholar 

  • Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ (2014b) Light and gravity signals synergize in modulating plant development. Front Plant Sci 5:563. doi:10.3389/fpls.2014.00563

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada M (2007) The fern as a model system to study photomorphogenesis. J Plant Res 120:3–16

    Article  CAS  PubMed  Google Scholar 

  • Whippo C, Hangarter R (2004) Phytochrome modulation of blue-light-induced phototropism. Plant Cell Environ 27:1223–1228

    Article  CAS  Google Scholar 

  • Woolley JT, Stoller EW (1978) Light penetration and light-induced seed germination in soil. Plant Physiol 61:597–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Vanneste S, Brewer PB, Michniewicz M, Grones P, Kleine-Vehn J, Löfke C, Teichmann T, Bielach A, Cannoot B (2011) Inositol trisphosphate-induced Ca 2+ signaling modulates auxin transport and PIN polarity. Dev Cell 20:855–866

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by NASA Grant NNX12A065G, and we would like to acknowledge the fine support of NASA’s Ames Research Center. In addition to NASA, we would like to thank the European Space Agency and the Norwegian User Support and Operations Center (N-USOC) for their support on this project. Finally, we would like to thank the astronauts on board the ISS for their support, without whom these experiments would not be possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Z. Kiss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2016_2581_MOESM1_ESM.tif

Supplementary material 1 (TIFF 155 kb) Suppl. Fig. S1 Heat map of blue light illumination within an individual seedling cassette

425_2016_2581_MOESM2_ESM.tif

Supplementary material 2 (TIFF 149 kb) Suppl. Fig. S2 Heat map of red-light illumination within an individual seedling cassette

Supplementary material 3 (TIFF 141 kb)

Supplementary material 4 (TIFF 146 kb)

Supplementary material 5 (TIFF 90 kb)

Supplementary material 6 (TIFF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandenbrink, J.P., Herranz, R., Medina, F.J. et al. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity. Planta 244, 1201–1215 (2016). https://doi.org/10.1007/s00425-016-2581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2581-8

Keywords

Navigation