Skip to main content

Conducting Plant Experiments in Space

  • Protocol
Plant Gravitropism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1309))

Abstract

The growth and development of plants during spaceflight have important implications for both basic and applied research supported by NASA and other international space agencies. While there have been many reviews of plant space biology, the present chapter attempts to fill a gap in the literature on the actual process and methods of performing plant research in the spaceflight environment. The author has been a principal investigator on six spaceflight projects and has another two space experiments in development. These experiences include using the US Space Shuttle, the former Russian space station Mir, and the International Space Station, utilizing the Space Shuttle and Space X as launch vehicles. While there are several ways to obtain a spaceflight opportunity, this review focuses on using the NASA peer-reviewed sciences approach to get an experiment manifested for flight. Three narratives for the implementation of plant space biology experiments are considered from rapid turnaround of a few months to a project with new hardware development that lasted 6 years. The many challenges of spaceflight research include logistical and resource constraints such as crew time, power, cold stowage, and data downlinks, among others. Additional issues considered are working at NASA centers, hardware development, safety concerns, and the engineering versus science culture in space agencies. The difficulties of publishing the results from spaceflight research based on such factors as the lack of controls, limited sample size, and the indirect effects of the spaceflight environment also are summarized. Finally, lessons learned from these spaceflight experiences are discussed in the context of improvements for future space-based research projects with plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clément G, Slenzka K (2006) Fundamentals of space biology: research on cells, animals, and plants in space. Springer, New York, NY

    Book  Google Scholar 

  2. Halstead TW, Dutcher FR (1984) Status and prospects. Ann Bot 54(S3):3–18

    CAS  PubMed  Google Scholar 

  3. Ferl RJ, Wheeler R, Levine HG, Paul A-L (2002) Plants in space. Curr Opin Plant Biol 5:258–263

    Article  PubMed  Google Scholar 

  4. Halstead TW, Dutcher FR (1987) Plants in space. Annu Rev Plant Physiol 38:317–345

    Article  CAS  PubMed  Google Scholar 

  5. Wolverton SC, Kiss JZ (2009) An update on plant space biology. Gravit Space Biol 22:13–20

    Google Scholar 

  6. Paul AL, Wheeler RM, Levine HG, Ferl RJ (2013) Fundamental plant biology enabled by The Space Shuttle. Am J Bot 100:226–234

    Article  PubMed  Google Scholar 

  7. Musgrave ME, Kuang A (2001) Reproduction during spaceflight by plants in the family Brassicaceae. J Gravit Physiol 8:29–32

    Google Scholar 

  8. De Micco V, Pascale S, Paradiso R, Aronne G (2014) Microgravity effects on different stages of higher plant life cycle and completion of the seed-to-seed cycle. Plant Biol 16:31–38

    Article  PubMed  Google Scholar 

  9. Darwin C, Darwin F (1880) The power of movement in plants. John Murray, London

    Book  Google Scholar 

  10. Kiss JZ (2009) Plants circling in outer space. New Phytol 182:555–557

    Article  PubMed  Google Scholar 

  11. Johnsson A, Solheim BGB, Iversen T-H (2009) Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment. New Phytol 182:621–629

    Article  CAS  PubMed  Google Scholar 

  12. Millar KDL, Kumar P, Correll MJ, Mullen JL, Hangarter RP, Edelmann RE, Kiss JZ (2010) A novel phototropic response to red light is revealed in microgravity. New Phytol 186:648–656

    Article  PubMed  Google Scholar 

  13. Kiss JZ, Millar KDL, Edelmann RE (2012) Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta 236:635–645

    Article  CAS  PubMed  Google Scholar 

  14. Krikorian AD (1996) Strategies for “minimal growth maintenance” of cell cultures: a perspective on management for extended duration experimentation in the microgravity environment of a space station. Bot Rev 62:41–108

    Article  CAS  PubMed  Google Scholar 

  15. Looft FJ (1986) The design of flight hardware, vol 2401, NASA conference publication. National Aeronautics and Space Administration, Washington DC, pp 109–116

    Google Scholar 

  16. Briarty LG (1989) Biology in microgravity. A guide for experimenters. ESA Publications, Noordwijk, The Netherlands

    Google Scholar 

  17. Klaus DM (2001) Clinostats and bioreactors. Gravit Space Biol Bull 14:55–64

    CAS  PubMed  Google Scholar 

  18. Claassen DE, Spooner BS (1994) Impact of altered gravity on aspects of cell biology. Int Rev Cytol 156:301–373

    Article  CAS  PubMed  Google Scholar 

  19. Kiss JZ (2014) Plant biology in reduced gravity on the Moon and Mars. Plant Biol 16(S1):12–17

    Article  PubMed  Google Scholar 

  20. Limbach C, Hauslage J, Schafer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139:1030–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kiss JZ, Wright JB, Caspar T (1996) Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Plant 97:237–244

    Article  CAS  PubMed  Google Scholar 

  22. Kiss JZ, Guisinger MM, Miller AJ, Stackhouse KS (1997) Reduced gravitropism in hypocotyls of starch-deficient mutants of Arabidopsis. Plant Cell Physiol 38:518–525

    Article  CAS  PubMed  Google Scholar 

  23. Manieri P, Brinckmann E, Brillouet C (1996) The Biorack facility and its performance during the IML-2 Spacelab mission. J Biotech 47:71–82

    Article  CAS  Google Scholar 

  24. Guisinger MM, Kiss JZ (1999) The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis. Am J Bot 86:1357–1366

    Article  CAS  PubMed  Google Scholar 

  25. Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131:1411–1417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Molas ML, Kiss JZ (2009) Phototropism and gravitropism in plants. Adv Bot Res 49:1–34

    Article  CAS  Google Scholar 

  27. Brinckmann E, Schiller P (2002) Experiments with small animals in BIOLAB and EMCS on the International Space Station. Adv Space Res 30:809–814

    Article  CAS  PubMed  Google Scholar 

  28. Correll MJ, Edelmann RE, Hangarter RP, Mullen JL, Kiss JZ (2005) Ground-based studies of tropisms in hardware developed for the European Modular Cultivation System (EMCS). Adv Space Res 36:1203–1210

    Article  Google Scholar 

  29. Kiss JZ, Kumar P, Millar KDL, Edelmann RE, Correll MJ (2009) Operations of a spaceflight experiment to investigate plant tropisms. Adv Space Res 44:879–886

    Article  Google Scholar 

  30. Kiss JZ, Millar KDL, Kumar P, Edelmann RE, Correll MJ (2011) Improvements in the re-flight of spaceflight experiments on plant tropisms. Adv Space Res 47:545–552

    Article  CAS  Google Scholar 

  31. Correll MJ, Pyle TP, Millar KDL, Sun Y, Yao J, Edelmann RE, Kiss JZ (2013) Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Planta 238:519–533

    Article  CAS  PubMed  Google Scholar 

  32. Millar KDL, Johnson CM, Edelmann RE, Kiss JZ (2011) An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. Astrobiology 11:787–797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kiss JZ, Aanes G, Schiefloe M, Coelho LHF, Millar KDL, Edelmann RE (2014) Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System. Adv Space Res 53:818–827

    Article  Google Scholar 

  34. NASA (2014) Office of small business programs. Available at: http://osbp.nasa.gov/SBIR-STTR.html. Accessed on 9 June 2014

  35. Ruttley TM, Evans CA, Robinson JA (2009) The importance of the International Space Station for life sciences research: past and future. Gravit Space Biol 22:67–81

    Google Scholar 

  36. NSPIRES (2014) NASA solicitation and proposal integrated review and evaluation system. Available at: http://nspires.nasaprs.com. Accessed on 9 June 2014

  37. Raff H, Brown D (2013) Civil, sensible, and constructive peer review in APS journals. J Appl Physiol 115:295–296

    Article  PubMed  Google Scholar 

  38. National Research Council (1995) Peer review in NASA life sciences programs. National Academy of Sciences Press, Washington, DC

    Google Scholar 

  39. Voels SA, Eppler DB (2004) The International Space Station as a platform for space science. Adv Space Res 34:594–599

    Article  Google Scholar 

  40. Brillouet C, Brinckmann E (1999) Biorack facility performance and experiment operations on three Spacehab Shuttle to Mir missions. In: Perry M (ed) Biorack on Spacehab (SP-1222). ESA Publications, Noordwijk, The Netherlands, pp 3–21

    Google Scholar 

  41. Kiss JZ, Edelmann RE, Wood PC (1999) Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in spaceflight studies. Planta 209:96–103

    Article  CAS  PubMed  Google Scholar 

  42. Kiss JZ, Katembe WJ, Edelmann RE (1998) Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight. Physiol Plant 102:493–502

    Article  CAS  PubMed  Google Scholar 

  43. Perbal G (2009) From ROOTS to GRAVI-1: twenty five years for understanding how plants sense gravity. Microgravity Sci Technol 21:3–10

    Article  Google Scholar 

  44. Katembe WJ, Edelmann RE, Brinckmann E, Kiss JZ (1998) The development of spaceflight experiments with Arabidopsis as a model system in gravitropism studies. J Plant Res 111:463–470

    Article  CAS  PubMed  Google Scholar 

  45. Brinckmann E (1999) Spaceflight opportunities on the ISS for plant research- the ESA perspective. Adv Space Res 24:779–788

    Article  CAS  PubMed  Google Scholar 

  46. Willemsen HP, Langerak E (2007) Hardware for biological microgravity experiments in Soyuz missions. Microgravity Sci Technol 19:75–79

    Article  Google Scholar 

  47. Astrium (2012) Space biology product catalog. Astrium, Friedrichshafen, Germany

    Google Scholar 

  48. Kittang A-I, Iversen T-H, Fossum KR, Mazars C, Carnero-Diaz E, Boucheron-Dubuisson E, Le Disquet I, Legué V, Herranz R, Pereda-Loth V, Medina FJ (2014) Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station. Plant Biol 16:528–538

    Article  PubMed  Google Scholar 

  49. Brinckmann E (2005) ESA hardware for plant research on the International Space Station. Adv Space Res 36:1162–1166

    Article  Google Scholar 

  50. Kiss JZ, Kumar P, Bowman RN, Steele MK, Eodice MT, Correll MJ, Edelmann RE (2007) Biocompatibility studies in preparation for a spaceflight experiment on plant tropisms (TROPI). Adv Space Res 39:1154–1160

    Article  Google Scholar 

  51. Camacho JR, Manning-Roach SP, Maresca EA, Levine HG (2012) BRIC-PDFU rapid turn-around spaceflight hardware. ASGSR Meeting, Abstract Book, p. 87

    Google Scholar 

  52. Brown AH (1992) Centrifuges: evolution of their uses in plant gravitational biology and new directions for research on the ground and in spaceflight. Gravit Space Biol Bull 5:43–57

    CAS  Google Scholar 

  53. Brinckmann E (2012) Centrifuges and their application for biological experiments in space. Microgravity Sci Technol 24:365–372

    Article  Google Scholar 

  54. Dutcher FR, Hess EL, Halstead TW (1994) Progress in plant research in space. Adv Space Res 14:159–171

    Article  CAS  PubMed  Google Scholar 

  55. Kern VD, Sack FD (1999) Irradiance dependent regulation of gravitropism by red light in protonemata of the moss Ceratodon purpureus. Planta 209:299–307

    Article  CAS  PubMed  Google Scholar 

  56. Kern VD, Schwuchow JM, Reed DW, Nadeau JA, Lucas J, Skripnikov A, Sack FD (2005) Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. Planta 221:149–157

    Article  CAS  PubMed  Google Scholar 

  57. Nakashima J, Liao F, Sparks JA, Tang Y, Blancaflor EB (2014) The actin cytoskeleton is a suppressor of the endogenous skewing behaviour of Arabidopsis primary roots in microgravity. Plant Biol 16(S1):142–150

    Article  PubMed  Google Scholar 

  58. Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li J-L, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ (2012) Spaceflight transcriptomes: unique responses to a novel environment. Astrobiology 12:40–56

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Jet Propulsion Laboratory (2014) Basics of space flight. Available at: http://www2.jpl.nasa.gov/basics/bsf7-1.php. Accessed on 9 June 2014

  60. Porterfield DM, Neichitailo GS, Mashinski AL, Musgrave ME (2003) Spaceflight hardware for conducting plant growth experiments in space: the early years 1960–2000. Adv Space Res 31:183–193

    Article  CAS  PubMed  Google Scholar 

  61. Perbal G, Driss-Ecole D (1994) Sensitivity to gravistimulus of lentil seedling roots grown in space during the IML 1 mission of Spacelab. Physiol Plant 90:313–318

    Article  CAS  PubMed  Google Scholar 

  62. De Parolis MN, Crippa G, Chegancas J, Olivier F, Guichard J (2006) MELFI ready for science – ESA’s −80 °C freezer begins work in space. ESA Bull 128:26–31

    Google Scholar 

  63. Stern SA (2013) The low-cost ticket to space. Sci Am 308(4):68–73

    Article  PubMed  Google Scholar 

  64. Robinson JA, Thumm TL, Thomas DA (2007) NASA utilization of the International Space Station and the Vision for Space Exploration. Acta Astronaut 61:176–184

    Article  Google Scholar 

  65. Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12:1007–1018

    CAS  PubMed  Google Scholar 

  66. Van Loon JJ, Bervoets D-J, Burger EH, Dieudonné SC, Suzanne C, Hagen J-W, Semeins CM, Doulabi BZ, Veldhuijzen PJ (1995) Decreased mineralization and increased calcium release in isolated fetal mouse long bones under near weightlessness. J Bone Miner Res 10:550–557

    Article  PubMed  Google Scholar 

  67. Kuang A, Popova A, McClure G, Musgrave ME (2005) Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity. Int J Plant Sci 166:85–96

    Article  CAS  PubMed  Google Scholar 

  68. Paul A-L, Popp MP, Gurley WB, Guy C, Norwood KL, Ferl RJ (2005) Arabidopsis gene expression patterns are altered during spaceflight. Adv Space Res 36:1175–1181

    Article  Google Scholar 

  69. Paul A-L, Ferl RJ (2011) Using green fluorescent protein (GFP) reporter genes in RNALater fixed tissue. Gravit Space Biol 25:40–43

    Google Scholar 

  70. Paul AL, Zupanska AK, Schultz ER, Ferl RJ (2013) Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight. BMC Plant Biol 13:1–11

    Article  Google Scholar 

  71. Kiss JZ, Brinckmann E, Brillouet C (2000) Development and growth of several strains of Arabidopsis seedlings in microgravity. Int J Plant Sci 161:55–62

    Article  CAS  PubMed  Google Scholar 

  72. Paradiso R, De Micco V, Buonomo R, Aronne G, Barbieri G, De Pascale S (2014) Soilless cultivation of soybean for Bioregenerative Life-Support Systems: a literature review and the experience of the MELiSSA Project–Food characterisation Phase I. Plant Biol 16(S1):69–78

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We have been fortunate to have flown a relatively large number of space experiments and appreciate the fine support provided by several NASA centers (ARC, KSC, JSC, and MSFC) and European facilities (ESTEC and N-USOC). Thanks are due to NASA for continued financial support of our spaceflight research and to ESA for providing excellent research laboratories for space research. I also wish to acknowledge my colleagues, friends, students, and the many astronauts who have contributed to the successes of our spaceflight projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Z. Kiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kiss, J.Z. (2015). Conducting Plant Experiments in Space. In: Blancaflor, E. (eds) Plant Gravitropism. Methods in Molecular Biology, vol 1309. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2697-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2697-8_19

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2696-1

  • Online ISBN: 978-1-4939-2697-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics