Skip to main content
Log in

Overexpression of a synthetic insect–plant geranyl pyrophosphate synthase gene in Camelina sativa alters plant growth and terpene biosynthesis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A novel plastidial homodimeric insect–plant geranyl pyrophosphate synthase gene is synthesized from three different cDNA origins. Its overexpression in Camelina sativa effectively alters plant development and terpenoid metabolism.

Geranyl pyrophosphate synthase (GPPS) converts one isopentenyl pyrophosphate and dimethylallyl pyrophosphate to GPP. Here, we report a synthetic insect–plant GPPS gene and effects of its overexpression on plant growth and terpenoid metabolism of Camelina sativa. We synthesized a 1353-bp cDNA, namely PTP-MpGPPS. This synthetic cDNA was composed of a 1086-bp cDNA fragment encoding a small GPPS isomer of the aphid Myzus persicae (Mp), 240-bp Arabidopsis thaliana cDNA fragment encoding a plastidial transit peptide (PTP), and a 27-bp short cDNA fragment encoding a human influenza hemagglutinin tag peptide. Structural modeling showed that the deduced protein was a homodimeric prenyltransferase. Confocal microscopy analysis demonstrated that the PTP-MpGPPS fused with green florescent protein was localized in the plastids. The synthetic PTP-MpGPPS cDNA driven by 2 × 35S promoters was introduced into Camelina (Camelina sativa) by Agrobacterium-mediated transformation and its overexpression in transgenic plants were demonstrated by western blot. T2 and T3 progeny of transgenic plants developed larger leaves, grew more and longer internodes, and flowered earlier than wild-type plants. Metabolic analysis showed that the levels of beta-amyrin and campesterol were higher in tissues of transgenic plants than in those of wild-type plants. Fast isoprene sensor analysis demonstrated that transgenic Camelina plants emitted significantly less isoprene than wild-type plants. In addition, transcriptional analyses revealed that the expression levels of gibberellic acid and brassinosteroids-responsive genes were higher in transgenic plants than in wild-type plants. Taken together, these data demonstrated that this novel synthetic insect–plant GPPS cDNA was effective to improve growth traits and alter terpenoid metabolism of Camelina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almaarri K, Alamir L, Junaid Y, Xie D-Y (2010) Volatile compounds from leaf extracts of Juniperus excelsa growing in Syria via gas chromatography mass spectrometry. Anal Methods 2:673–677

    Article  CAS  Google Scholar 

  • Andersson C, Engardt M (2010) European ozone in a future climate: importance of changes in dry deposition and isoprene emissions. J Geophys Res-Atmos 115:D02303

    Google Scholar 

  • Arneth A, Schurgers G, Hickler T, Miller PA (2008) Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol 10:150–162

    Article  CAS  PubMed  Google Scholar 

  • Arneth A, Schurgers G, Lathiere J, Duhl T, Beerling DJ, Hewitt CN, Martin M, Guenther A (2011) Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation. Atmos Chem Phys 11:8037–8052

    Article  CAS  Google Scholar 

  • Augustin J, Higashi Y, Feng X, Kutchan T (2015) Production of mono- and sesquiterpenes in Camelina sativa oilseed. Planta 242:693–708

    Article  CAS  PubMed  Google Scholar 

  • Berhow MA, Vaughn SF, Moser BR, Belenli D, Polat U (2014) Evaluating the phytochemical potential of camelina: an emerging new crop of old world origin. Phytochemicals—biosynthesis, function and application. Recent Adv Phytochem 44:129–148

    CAS  Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154

    Article  CAS  PubMed  Google Scholar 

  • Borghi M, Xie D-Y (2016) Tissue-specific production of limonene in Camelina sativa with the Arabidopsis promoters of genes BANYULS and FRUITFULL. Planta 243:549–561

    Article  CAS  PubMed  Google Scholar 

  • Burke C, Croteau R (2002a) Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405:130–136

    Article  CAS  PubMed  Google Scholar 

  • Burke C, Croteau R (2002b) Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 277:3141–3149

    Article  CAS  PubMed  Google Scholar 

  • Burke CC, Wildung MR, Croteau R (1999) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. PNAS 96:13062–13067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho SM, Heuvelink E, Cascais R, van Kooten O (2002) Effect of day and night temperature on internode and stem length in chrysanthemum: is everything explained by DIF? Ann Bot 90:111–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang TH, Hsieh FL, Ko TP, Teng KH, Liang PH, Wang AHJ (2010) Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell 22:454–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen QW, Fan DJ, Wang GD (2015) Heteromeric geranyl(geranyl) diphosphate synthase is involved in monoterpene biosynthesis in Arabidopsis flowers. Mol Plant 8:1434–1437

    Article  CAS  PubMed  Google Scholar 

  • Choudhury SR, Riesselman AJ, Pandey S (2014) Constitutive or seed-specific overexpression of Arabidopsis G-protein gamma subunit 3 (AGG3) results in increased seed and oil production and improved stress tolerance in Camelina sativa. Plant Biotechnol J 12:49–59

    Article  Google Scholar 

  • Ciubota-Rosie C, Ruiz JR, Ramos MJ, Perez A (2013) Biodiesel from Camelina sativa: a comprehensive characterisation. Fuel 105:572–577

    Article  CAS  Google Scholar 

  • Coll-Garcia D, Mazuch J, Altmann T, Mussig C (2004) EXORDIUM regulates brassinosteroid-responsive genes. FEBS Lett 563:82–86

    Article  CAS  PubMed  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalal J, Lopez H, Vasani NB, Hu ZH, Swift JE, Yalamanchili R, Dvora M, Lin XL, Xie DY, Qu RD, Sederoff HW (2015) A photorespiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnol Biofuels 8:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Exton DA, Smith DJ, McGenity TJ, Steinke M, Hills AJ, Suggett DJ (2010) Application of a fast Isoprene sensor (FIS) for measuring isoprene production from marine samples. Limnol Oceanogr Meth 8:185–195

    Google Scholar 

  • Frick S, Nagel R, Schmidt A, Bodemann RR, Rahfeld P, Pauls G, Brandt W, Gershenzon J, Boland W, Burse A (2013) Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. PNAS 110:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilg AB, Bearfield JC, Tittiger C, Welch WH, Blomquist GJ (2005) Isolation and functional expression of an animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. PNAS 102:9760–9765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippenanderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210

    Article  CAS  Google Scholar 

  • Gutensohn M, Orlova I, Nguyen TT, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N (2013a) Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J: Cell Mol Biol 75:351–363

    Article  CAS  Google Scholar 

  • Gutensohn M, Orlova I, Nguyen TTH, Davidovich-Rikanati R, Ferruzzi MG, Sitrit Y, Lewinsohn E, Pichersky E, Dudareva N (2013b) Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits. Plant J 75:351–363

    Article  CAS  PubMed  Google Scholar 

  • Guy SO, Wysocki DJ, Schillinger WF, Chastain TG, Karow RS, Garland-Campbell K, Burke IC (2014) Camelina: adaptation and performance of genotypes. Field Crop Res 155:224–232

    Article  Google Scholar 

  • Heller H (1933) Concerning Camelina sativa (False Flax). Angew Chem 46:441–442

    Article  CAS  Google Scholar 

  • Hsiao YY, Jeng MF, Tsai WC, Chuang YC, Li CY, Wu TS, Kuoh CS, Chen WH, Chen HH (2008) A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)(2-4)D motif. Plant J 55:719–733

    Article  CAS  PubMed  Google Scholar 

  • Hsieh FL, Chang TH, Ko TP, Wang AHJ (2011) Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155:1079–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagale S, Koh CS, Nixon J, Bollina V, Clarke WE, Tuteja R, Spillane C, Robinson SJ, Links MG, Clarke C, Higgins EE, Huebert T, Sharpe AG, Parkin IAP (2014) The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure. Nat Commun 5:3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7:1511–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruczynski S, Orlinski P, Biernat K (2012) Camelina oil as a biofuel for diesel engines. Przem Chem 91:111–114

    CAS  Google Scholar 

  • Lange BM (2015) The evolution of plant secretory structures and emergence of terpenoid chemical diversity. Annu Rev Plant Biol 66:139–159

    Article  CAS  PubMed  Google Scholar 

  • Lee JD, Lewis AC, Monks PS, Jacob M, Hamilton JF, Hopkins JR, Watson NM, Saxton JE, Ennis C, Carpenter LJ, Carslaw N, Fleming Z, Bandy BJ, Oram DE, Penkett SA, Slemr J, Norton E, Rickard AR, Whalley LK, Heard DE, Bloss WJ, Gravestock T, Smith SC, Stanton J, Pilling MJ, Jenkin ME (2006) Ozone photochemistry and elevated isoprene during the UK heatwave of August 2003. Atmos Environ 40:7598–7613

    Article  CAS  Google Scholar 

  • Lee DW, Kim JK, Lee S, Choi S, Kim S, Hwang I (2008) Arabidopsis nuclear-encoded plastid transit peptides contain multiple sequence subgroups with distinctive chloroplast-targeting sequence motifs. Plant Cell 20:1603–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep 27:273–278

    Article  CAS  PubMed  Google Scholar 

  • Martin D, Piulachs MD, Cunillera N, Ferrer A, Belles X (2007) Mitochondrial targeting of farnesyl diphosphate synthase is a widespread phenomenon in eukaryotes. Biochim Biophys Acta 1773:419–426

    Article  CAS  PubMed  Google Scholar 

  • Monson RK, Jones RT, Rosenstiel TN, Schnitzler JP (2013) Why only some plants emit isoprene. Plant Cell Environ 36:503–516

    Article  CAS  PubMed  Google Scholar 

  • Moser BR (2012) Biodiesel from alternative oilseed feedstocks: camelina and field pennycress. Biofuels 3:193–209

    Article  CAS  Google Scholar 

  • Mudalkar S, Golla R, Ghatty S, Reddy AR (2014) De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol Biol 84:159–171

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagegowda DA (2010) The small subunit of geranyl diphosphate synthase: a tool to improve aroma and flavour by metabolic engineering. J Biosci 35:167–169

    Article  PubMed  Google Scholar 

  • Nguyen HT, Silva JE, Podicheti R, Macrander J, Yang WY, Nazarenus TJ, Nam JW, Jaworski JG, Lu CF, Scheffler BE, Mockaitis K, Cahoon EB (2013) Camelina seed transcriptome: a tool for meal and oil improvement and translational research. Plant Biotechnol J 11:759–769

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HT, Park H, Koster KL, Cahoon RE, Nguyen H, Shanklin J, Clemente TE, Cahoon EB (2014) Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnol J 12:1–13

    Article  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14(Suppl):S61–S80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, Krichevsky A, Citovsky V, Pichersky E, Dudareva N (2009) The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 21:4002–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Nguyen KT, Park E, Jeon JS, Choi G (2013) DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis. Plant Cell 25:927–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park W, Feng YF, Ahn SJ (2014) Alteration of leaf shape, improved metal tolerance, and productivity of seed by overexpression of CsHMA3 in Camelina sativa. Biotechnol Biofuels 7:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng J, Xu J (2011) RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 79:161–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putnam DH, Budin JT, Field LA, Breene WM (1993) Camelina: a promising low-input oilseed. In: Janick J, Simon JE (eds) New crops, exploration, research and commercialization. Wiley, New York, pp 314–322

    Google Scholar 

  • Rai A, Smita SS, Singh AK, Shanker K, Nagegowda DA (2013) Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis. Mol Plant 6:1531–1549

    Article  CAS  PubMed  Google Scholar 

  • Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3:387–395

    Article  CAS  PubMed  Google Scholar 

  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259

    Article  CAS  PubMed  Google Scholar 

  • Schillinger WF, Wysocki DJ, Chastain TG, Guy SO, Karow RS (2012) Camelina: planting date and method effects on stand establishment and seed yield. Field Crop Res 130:138–144

    Article  Google Scholar 

  • Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69:49–57

    Article  CAS  PubMed  Google Scholar 

  • Schmidt A, Wachtler B, Temp U, Krekling T, Seguin A, Gershenzon J (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152:639–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnitzler JP, Lehning A, Steinbrecher R (1997) Seasonal pattern of isoprene synthase activity in Quercus robur leaves and its significance for modeling isoprene emission rates. Bot Acta 110:240–243

    Article  CAS  Google Scholar 

  • Sharkey TD (2013) Is it useful to ask why plants emit isoprene? Plant Cell Environ 36:517–520

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Singsaas EL, Vanderveer PJ, Geron C (1996) Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol 16:649–654

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Singsaas EL, Lerdau MT, Geron CD (1999) Weather effects on isoprene emission capacity and applications in emissions algorithms. Ecol Appl 9:1132–1137

    Article  Google Scholar 

  • Shonnard DR, Williams L, Kalnes TN (2010) Camelina-derived jet fuel and diesel: sustainable advanced biofuels. Environ Prog Sustain Energy 29:382–392

    Article  CAS  Google Scholar 

  • Singsaas EL, Sharkey TD (2000) The effects of high temperature on isoprene synthesis in oak leaves. Plant, Cell Environ 23:751–757

    Article  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Springob K, Kutchan TM (2009) Introduction to the different classes of natural products. In: Osbourn AE, Lanzotti V (eds) Plant-derived natural products. Springer, New York, pp 3–50

    Chapter  Google Scholar 

  • Sun YQ, Ponnusamy S, Muppaneni T, Reddy HK, Patil PD, Li CZ, Jiang LJ, Deng SG (2014) Optimization of high-energy density biodiesel production from Camelina sativa oil under supercritical 1-butanol conditions. Fuel 135:522–529

    Article  CAS  Google Scholar 

  • Tarshis LC, Proteau PJ, Kellogg BA, Sacchettini JC, Poulter CD (1996) Regulation of product chain length by isoprenyl diphosphate synthases. PNAS 93:15018–15023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tholl D, Lee S (2011) Elucidating the metabolism of plant terpene volatiles: alternative tools for engineering plant defenses? In: Gang DR (ed) Biological activity of phytochemicals. Springer, New York, pp 159–178

    Chapter  Google Scholar 

  • Tracy NI, Chen D, Crunkleton DW, Price GL (2009) Hydrogenated monoterpenes as diesel fuel additives. Fuel 88:2238–2240

    Article  CAS  Google Scholar 

  • van Schie CC, Ament K, Schmidt A, Lange T, Haring MA, Schuurink RC (2007a) Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J: Cell Mol Biol 52:752–762

    Article  Google Scholar 

  • van Schie CCN, Ament K, Schmidt A, Lange T, Haring MA, Schuurink RC (2007b) Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J 52:752–762

    Article  PubMed  Google Scholar 

  • Vandermoten S, Charloteaux B, Santini S, Sen SE, Beliveau C, Vandenbol M, Francis F, Brasseur R, Cusson M, Haubruge E (2008) Characterization of a novel aphid prenyltransferase displaying dual geranyl/farnesyl diphosphate synthase activity. FEBS Lett 582:1928–1934

    Article  CAS  PubMed  Google Scholar 

  • Vandermoten S, Haubruge E, Cusson M (2009a) New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66:3685–3695

    Article  CAS  PubMed  Google Scholar 

  • Vandermoten S, Santini S, Haubruge E, Heuze F, Francis F, Brasseur R, Cusson M, Charloteaux B (2009b) Structural features conferring dual geranyl/farnesyl diphosphate synthase activity to an aphid prenyltransferase. Insect Biochem Mol Biol 39:707–716

    Article  CAS  PubMed  Google Scholar 

  • Wang GD, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. PNAS 106:9914–9919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Ohnuma S (2000) Isoprenyl diphosphate synthases. Biochim Biophys Acta 1529:33–48

    Article  CAS  PubMed  Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotech 24:1441–1447

    Article  CAS  Google Scholar 

  • Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiol 110:1029–1034

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Phytotron at North Carolina State University for the excellent technical assistance on plant growth. We are grateful to Dr. Jyoti Dalal for critical reading of our manuscript. This work was supported by the Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) (Project #: 554667-06858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yu Xie.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1866 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, J., Rossi, L., Lin, X. et al. Overexpression of a synthetic insect–plant geranyl pyrophosphate synthase gene in Camelina sativa alters plant growth and terpene biosynthesis. Planta 244, 215–230 (2016). https://doi.org/10.1007/s00425-016-2504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2504-8

Keywords

Navigation