Skip to main content
Log in

Lignin–carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Two types of lignins occurred in different lignin–carbohydrate fractions, a lignin enriched in syringyl units, less condensed, preferentially associated with xylans, and a lignin with more guaiacyl units, more condensed, associated with glucans.

Lignin–carbohydrate complexes (LCC) were isolated from the fibers of sisal (Agave sisalana) and abaca (Musa textilis) according to a plant biomass fractionation procedure recently developed and which was termed as “universally” applicable to any type of lignocellulosic material. Two LCC fractions, namely glucan–lignin (GL) and xylan–lignin (XL), were isolated and differed in the content and composition of carbohydrates and lignin. In both cases, GL fractions were enriched in glucans and comparatively depleted in lignin, whereas XL fractions were depleted in glucans, but enriched in xylans and lignin. Analysis by two-dimensional Nuclear Magnetic Resonance (2D-NMR) and Derivatization Followed by Reductive Cleavage (DFRC) indicated that the XL fractions were enriched in syringyl (S)-lignin units and β-O-4′ alkyl-aryl ether linkages, whereas GL fractions have more guaiacyl (G)-lignin units and less β-O-4′ alkyl-aryl ether linkages per lignin unit. The data suggest that the structural characteristics of the lignin polymers are not homogeneously distributed within the same plant and that two different lignin polymers with different composition and structure might be present. The analyses also suggested that acetates from hemicelluloses and the acyl groups (acetates and p-coumarates) attached to the γ-OH of the lignin side chains were extensively hydrolyzed and removed during the LCC fractionation process. Therefore, caution must be paid when using this fractionation approach for the structural characterization of plants with acylated hemicelluloses and lignins. Finally, several chemical linkages (phenylglycosides and benzyl ethers) could be observed to occur between lignin and xylans in these plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balakshin MY, Capanema EA, Chang HM (2007) A fraction of MWL with a high concentration of lignin–carbohydrate linkages: isolation and 2D NMR spectroscopic analysis. Holzforschung 61:1–7

    Article  CAS  Google Scholar 

  • Balakshin M, Capanema E, Gracz H, Chang HM, Jameel H (2011) Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Björkman A (1956) Studies on finely divided wood. Part I. Extraction of lignin with neutral solvents. Svensk Papperstidn 59:477–485

    Google Scholar 

  • Cadena EM, Du X, Gellerstedt G, Li J, Fillat A, García-Ubasart J, Vidal T, Colom JF (2011) On hexenuronic acid (HexA) removal and mediator coupling to pulp fiber in the laccase/mediator treatment. Bioresour Technol 102:3911–3917

    Article  CAS  PubMed  Google Scholar 

  • Darwill A, McNeil M, Albersheim P, Delmer D (1980) The primary cell-walls of flowering plants. In: Tolbert N (ed) The biochemistry of plants. Academic Press, New York, pp 91–162

    Google Scholar 

  • del Río JC, Gutiérrez A, Martínez AT (2004) Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18:1181–1185

    Article  PubMed  Google Scholar 

  • del Río JC, Marques G, Rencoret J, Martínez AT, Gutiérrez A (2007) Occurrence of naturally acetylated lignin units. J Agric Food Chem 55:5461–5468

    Article  PubMed  Google Scholar 

  • del Río JC, Rencoret J, Marques G, Gutiérrez A, Ibarra D, Santos JI, Jiménez-Barbero J, Zhang L, Martínez AT (2008) Highly acylated (acetylated and/or p-coumaroylated) native lignins from diverse herbaceous plants. J Agric Food Chem 56:9525–9534

    Article  PubMed  Google Scholar 

  • del Río JC, Rencoret J, Prinsen P, Martínez AT, Ralph J, Gutiérrez A (2012a) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60:5922–5935

    Article  PubMed  Google Scholar 

  • del Río JC, Prinsen P, Rencoret J, Nieto L, Jiménez-Barbero J, Ralph J, Martínez AT, Gutiérrez A (2012b) Structural characterization of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems. J Agric Food Chem 60:3619–3634

    Article  PubMed  Google Scholar 

  • del Río JC, Lino AG, Colodette JL, Lima CF, Gutiérrez A, Martínez AT, Lu F, Ralph J, Rencoret J (2015) Differences in the chemical structures of the lignins from sugarcane bagasse and straw. Biomass Bioenergy 81:322–338

    Article  Google Scholar 

  • Du X, Gellerstedt G, Li J (2013) Universal fractionation of lignin–carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J 74:328–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du X, Pérez-Boada M, Fernández C, Rencoret J, del Río JC, Jiménez-Barbero J, Li J, Gutiérrez A, Martínez AT (2014) Analysis of lignin–carbohydrate and lignin–lignin linkages after hydrolase treatment of xylan–lignin, glucomannan–lignin and glucan–lignin complexes from spruce wood. Planta 239:1079–1090

    Article  CAS  PubMed  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Kim H, Ralph J, Akiyama T (2008) Solution-state 2D NMR of ball-milled plant cell-wall gels in DMSO-d 6. Bioenergy Res 1(1):56–66

    Article  Google Scholar 

  • Koshijima T, Watanabe T (2003) Association between lignin and carbohydrates in wood and other plant tissues. Springer, Berlin

    Book  Google Scholar 

  • Landucci LL, Deka GC, Roy DNA (1992) 13C NMR study of milled wood lignins from hybrid Salix clones. Holzforschung 46:505–511

    Article  CAS  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2003) New method for quantitative preparation of lignin–carbohydrate complex from unbleached softwood kraft pulp: lignin–polysaccharide networks I. Holzforschung 57:69–74

    Article  CAS  Google Scholar 

  • Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin–carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6:3467–3473

    Article  CAS  PubMed  Google Scholar 

  • Li K, Helm RF (1995) Synthesis and rearrangement reactions of ester-linked lignin–carbohydrate model compounds. J Agric Food Chem 43:2098–2103

    Article  CAS  Google Scholar 

  • Li J, Martin-Sampedro R, Pedrazzi C, Gellerstedt G (2011) Fractionation and characterization of lignin–carbohydrate complexes (LCCs) from eucalyptus fibers. Holzforschung 65:43–50

    CAS  Google Scholar 

  • Lu F, Ralph J (1997a) Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: protocol for analysis of DFRC monomers. J Agric Food Chem 45:2590–2592

    Article  CAS  Google Scholar 

  • Lu F, Ralph J (1997b) The DFRC method for lignin analysis. Part 1. A new method for β-aryl ether cleavage: lignin model studies. J Agric Food Chem 45:4655–4660

    Article  CAS  Google Scholar 

  • Lu F, Ralph J (1998) The DFRC method for lignin analysis. 2. Monomers from isolated lignin. J Agric Food Chem 46:547–552

    Article  CAS  PubMed  Google Scholar 

  • Lu F, Ralph J (1999) Detection and determination of p-coumaraloylated units in lignin. J Agric Food Chem 47:1985–1992

    Google Scholar 

  • Lu F, Ralph J (2005) Novel β–β-structures in lignins incorporating acylated monolignols. In: Proceedings of the Thirteenth International Symposium on Wood, Fiber, and Pulping Chemistry, APPITA, New Zealand, pp 233–237

  • Lu F, Karlen SD, Regner M, Kim H, Ralph SA, Sun R-C, K-i Kuroda, Augustin MA, Mawson R, Sabarez H, Singh T, Jimenez-Monteon G, Zakaria S, Hill S, Harris PJ, Boerjan W, Wilkerson CG, Mansfield SD, Ralph J (2015) Naturally p-hydroxybenzoylated lignins in palms. BioEnergy Res 8:934–952

    Article  CAS  Google Scholar 

  • Mansfield SD, Kim H, Lu F, Ralph J (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nat Protcols 7:1579–1589

    Article  CAS  Google Scholar 

  • Marques G, Gutiérrez A, del Río JC, Evtuguin DV (2010) Acetylated heteroxylan from Agave sisalana and its behaviour during alkaline pulping and TCF/ECF bleaching. Carbohydr Polym 81:517–523

    Article  CAS  Google Scholar 

  • Martínez AT, Rencoret J, Marques G, Gutiérrez A, Ibarra D, Jiménez-Barbero J, del Río JC (2008) Monolignol acylation and lignin structure in some nonwoody plants: a 2D-NMR study. Phytochemistry 69:2831–2843

    Article  PubMed  Google Scholar 

  • Miyagawa Y, Mizukami T, Kamitakahara H, Takano T (2014) Synthesis and fundamental HSQC NMR data of monolignol β-glycosides, dihydromonolignol β-glycosides and p-hydroxybenzaldehyde derivative β-glycosides for the analysis of phenyl glycoside type lignin–carbohydrate complexes (LCCs). Holzforschung 68:747–760

    Article  CAS  Google Scholar 

  • Önnerud H, Gellerstedt G (2003a) Inhomogeneities in the chemical structure of spruce lignin. Holzforschung 57:165–170

    Google Scholar 

  • Önnerud H, Gellerstedt G (2003b) Inhomogeneities in the chemical structure of hardwood lignins. Holzforschung 57:255–265

    Google Scholar 

  • Ralph J (1996) An unusual lignin from kenaf. J Nat Prod 59:341–342

    Article  CAS  Google Scholar 

  • Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83

    Article  CAS  Google Scholar 

  • Ralph J, Lu F (1998) The DFRC method for lignin analysis. 6. A simple modification for identifying natural acetates in lignin. J Agric Food Chem 46:4616–4619

    Article  CAS  Google Scholar 

  • Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung H-JG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456

    Article  CAS  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH et al (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    Article  CAS  Google Scholar 

  • Ralph SA, Ralph J, Landucci L (2009) NMR database of lignin and cell wall model compounds. https://www.glbrc.org/databases_and_software/nmrdatabase/. Accessed on July 2015

  • Rencoret J, Marques G, Gutiérrez A, Nieto L, Santos JI, Jiménez-Barbero J et al (2009) HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state. Holzforschung 63(6):691–698

    Article  CAS  Google Scholar 

  • Rencoret J, Ralph J, Marques G, Gutiérrez A, Martínez AT, del Río JC (2013) Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. J Agric Food Chem 61:2434–2445

    Article  CAS  PubMed  Google Scholar 

  • Sjöström E (1993) Wood constituents, fundamentals and applications, 2nd edn. Academic Press, New York

    Google Scholar 

  • Sun J-X, Sun X-F, Sun R-C, Fowler P, Baird MS (2003) Inhomogeneities in the chemical structure of sugarcane bagasse lignin. J Agric Food Chem 51:6719–6725

    Article  CAS  PubMed  Google Scholar 

  • Sun S-L, Wen J-L, Ma M-G, Li M-F, Sun R-C (2013) Revealing the structural inhomogeneity of lignins from sweet sorghum stem by successive alkali extractions. J Agric Food Chem 61:4226–4235

    Article  CAS  PubMed  Google Scholar 

  • Tappi Standard Test Methods 2004–2005 (2004) Tappi test methods. Tappi Press, Atlanta

  • Teleman A, Tenkanen M, Jacobs A, Dahlman O (2002) Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr Res 337:373–377

    Article  CAS  PubMed  Google Scholar 

  • Terashima N, Ralph SA, Landucci LL (1996) New facile syntheses of monolignol glucosides; p-glucocoumaryl alcohol, coniferin, and syringin. Holzforschung 50:151–155

    Article  CAS  Google Scholar 

  • Toikka M, Brunow G (1999) Lignin–carbohydrate model compounds. Reactivity of methyl 3-O-(α-l-arabinofuranosyl)-β-d-xylopyranoside and methyl β-d-xylopyranoside towards a β-O-4-quinone methide. J Chem Soc Perkin Trans 1:1877–1883

    Article  Google Scholar 

  • Toikka M, Sipilä J, Teleman A, Brunow G (1998) Lignin–carbohydrate model compounds. Formation of lignin–methyl arabinoside and lignin–methyl galactoside benzyl ethers via quinone methide intermediates. J Chem Soc Perkin Trans 1:3813–3818

    Article  Google Scholar 

  • Tokimatsu T, Umezawa T, Shimada M (1996) Synthesis of four diastereomeric lignin carbohydrate complexes (LCC) model compounds composed of a β-O-4 lignin model linked to methyl beta-d-glucoside. Holzforschung 50:156–160

    Article  CAS  Google Scholar 

  • Wen J-L, Sun S-L, Xue B-L, Sun R-C (2015) Structural elucidation of inhomogeneous lignins from bamboo. Int J Biol Macromol 77:250–259

    Article  CAS  PubMed  Google Scholar 

  • Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Carbohydr Polym 52:175–187

    Article  Google Scholar 

  • Yuan T-Q, Sun S-N, Xu F, Sun R-C (2011) Characterization of lignin structures and lignin–carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J Agric Food Chem 59:10604–10614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been funded by the Spanish Projects AGL2011-25379, AGL2014-53730-R and CTQ2014-60764-JIN (co-financed by FEDER funds); the CSIC project 2014-40E-097; and the EU-Projects LIGNODECO (KBBE-2009-3-244362); and INDOX (KBBE-2013-7-613549). Analysis of carbohydrates was performed by Carlos Vila (Celbiotech Research Group, Polytechnic University of Catalonia, Tarrasa, Spain). We finally thank Dr. Manuel Angulo for performing the NMR analyses that were acquired in a Bruker Advance III 500 MHz instrument from the NMR facilities of the General Research Services of the University of Seville (SGI-CITIUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José C. del Río.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Río, J.C., Prinsen, P., Cadena, E.M. et al. Lignin–carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process. Planta 243, 1143–1158 (2016). https://doi.org/10.1007/s00425-016-2470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2470-1

Keywords

Navigation