Skip to main content
Log in

OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response through the modulation of three flowering-time genes ( Ehd1, Hd3a , and RFT1 ) in rice.

Plant NUCLEAR FACTOR Y (NF-Y) transcription factors control numerous developmental processes by forming heterotrimeric complexes, but little is known about their roles in flowering in rice. In this study, it is shown that some subunits of OsNF-YB and OsNF-YC interact with each other, and among them, OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response of rice. Protein interaction studies showed that the physical interactions occurred between the three OsNF-YC proteins (OsNF-YC2, OsNF-YC4 and OsNF-YC6) and three OsNF-YB proteins (OsNF-YB8, OsNF-YB10 and OsNF-YB11). Repression and overexpression of the OsNF-YC2 and OsNF-YC4 genes revealed that they act as inhibitors of flowering only under long-day (LD) conditions. Overexpression of OsNF-YC6, however, promoted flowering only under LD conditions, suggesting it could function as a flowering promoter. These phenotypes correlated with the changes in the expression of three rice flowering-time genes [Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1)]. The diurnal and tissue-specific expression patterns of the subsets of OsNF-YB and OsNF-YC genes were similar to those of CCT domain encoding genes such as OsCO3, Heading date 1 (Hd1) and Ghd7. We propose that OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response by interacting directly with OsNF-YB8, OsNF-YB10 or OsNF-YB11 proteins in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CO:

CONSTANS

Ehd1:

Early heading date 1

NF-Y:

NUCLEAR FACTOR Y transcription factor

FT:

FLOWERING LOCUS T

GFP:

Green fluorescence protein

GST:

Glutathione S-transferase

HAP:

Heme activator protein

Hd1(3a):

Heading date 1(3a)

LD:

Long-day

ORFs:

Open-reading frames

RFT1:

RICE FLOWERING LOCUS T1

SD:

Short-day

Ubi1:

Ubiquitin1

References

  • Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J 46:462–476

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, DeWald D, Kreps J, Zhu T, Wu Y (2007) A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol 145:98–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calvenzani V, Testoni B, Gusmaroli G, Lorenzo M, Gnesutta N, Petroni K, Mantovani R, Tonelli C (2012) Interactions and CCAAT-binding of Arabidopsis thaliana NF-Y subunits. PLoS One 7:e42902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao S, Kumimoto RW, Siriwardana CL, Risinger JR, Holt BF 3rd (2011) Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon. PLoS One 6:e21805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen NZ, Zhang XQ, Wei PC, Chen QJ, Ren F, Chen J, Wang XC (2007) AtHAP3b plays a crucial role in the regulation of flowering time in Arabidopsis during osmotic stress. J Biochem Mol Biol 40:1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards D, Murray JA, Smith AG (1998) Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol 117:1015–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frontini M, Imbriano C, Manni I, Mantovani R (2004) Cell cycle regulation of NF-YC nuclear localization. Cell Cycle 3:217–222

    Article  CAS  PubMed  Google Scholar 

  • Goda H, Nagase T, Tanoue S, Sugiyama J, Steidl S, Tuncher A, Kobayashi T, Tsukagoshi N, Brakhage AA, Kato M (2005) Nuclear translocation of the heterotrimeric CCAAT binding factor of Aspergillus oryzae is dependent on two redundant localising signals in a single subunit. Arch Microbiol 184:93–100

    Article  CAS  PubMed  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hackenberg D, Wu Y, Voigt A, Adams R, Schramm P, Grimm B (2012) Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y. Mol Plant 5:876–888

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  CAS  PubMed  Google Scholar 

  • Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M (2013) Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J 76:36–46

    PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42:635–638

    Article  CAS  PubMed  Google Scholar 

  • Jang YH, Park HY, Kim SK, Lee JH, Suh MC, Chung YS, Paek KH, Kim JK (2009) Survey of rice proteins interacting with OsFCA and OsFY proteins which are homologous to the Arabidopsis flowering time proteins, FCA and FY. Plant Cell Physiol 50:1479–1492

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Yun CH, Lee JH, Jang YH, Park HY, Kim JK (2008) OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228:355–365

    Article  CAS  PubMed  Google Scholar 

  • Komiya R, Yokoi S, Shimamoto K (2009) A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136:3443–3450

    Article  CAS  PubMed  Google Scholar 

  • Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ (2008) The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228:709–723

    Article  CAS  PubMed  Google Scholar 

  • Kumimoto RW, Zhang Y, Siefers N, Holt BF 3rd (2010) NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J 63:379–391

    Article  CAS  PubMed  Google Scholar 

  • Kwon CT, Koo BH, Kim D, Yoo SC, Paek NC (2015) Casein kinases I and 2α phosphorylate Oryza sativa pseudo-response regulator 37 (OsPRR37) in photoperiodic flowering in rice. Mol Cells 38:81–88

    PubMed Central  PubMed  Google Scholar 

  • Laloum T, De Mita S, Gamas P, Baudin M, Niebel A (2013) CCAAT-box binding transcription factors in plants: Y so many? Trends Plant Sci 18:157–166

    Article  CAS  PubMed  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li C, Distelfeld A, Comis A, Dubcovsky J (2011) Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes. Plant J 67:763–773

    Article  CAS  PubMed  Google Scholar 

  • Maity SN, de Crombrugghe B (1998) Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23:174–178

    Article  CAS  PubMed  Google Scholar 

  • Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy Cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyoshi K, Ito Y, Serizawa A, Kurata N (2003) OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J 36:532–540

    Article  CAS  PubMed  Google Scholar 

  • Mu J, Tan H, Hong S, Liang Y, Zuo J (2013) Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Mol Plant 6:188–201

    Article  CAS  PubMed  Google Scholar 

  • Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J 36:82–93

    Article  CAS  PubMed  Google Scholar 

  • Peng LT, Shi ZY, Li L, Shen GZ, Zhang JL (2007) Ectopic expression of OsLFL1 in rice represses Ehd1 by binding on its promoter. Biochem Biophys Res Commun 360:251–256

    Article  CAS  PubMed  Google Scholar 

  • Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF 3rd, Mantovani R (2012) The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell 24:4777–4792

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD, An G (2009) OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant, Cell Environ 32:1412–1427

    Article  CAS  Google Scholar 

  • Siefers N, Dang KK, Kumimoto RW, Bynum WEt, Tayrose G, Holt BF 3rd (2009) Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol 149:625–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steidl S, Tuncher A, Goda H, Guder C, Papadopoulou N, Kobayashi T, Tsukagoshi N, Kato M, Brakhage AA (2004) A single subunit of a heterotrimeric CCAAT-binding complex carries a nuclear localization signal: piggy back transport of the pre-assembled complex to the nucleus. J Mol Biol 342:515–524

    Article  CAS  PubMed  Google Scholar 

  • Thirumurugan T, Ito Y, Kubo T, Serizawa A, Kurata N (2008) Identification, characterization and interaction of HAP family genes in rice. Mol Genet Genom 279:279–289

    Article  CAS  Google Scholar 

  • Tuncher A, Sprote P, Gehrke A, Brakhage AA (2005) The CCAAT-binding complex of eukaryotes: evolution of a second NLS in the HapB subunit of the filamentous fungus Aspergillus nidulans despite functional conservation at the molecular level between yeast, A.nidulans and human. J Mol Biol 352:517–533

    Article  PubMed  Google Scholar 

  • Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971–2984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xing Y, Fikes JD, Guarente L (1993) Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain. EMBO J 12:4647–4655

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Kagaya Y, Toyoshima R, Kagaya M, Takeda S, Hattori T (2009) Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. Plant J 58:843–856

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professors C.D. Han (Gyeongsang National University) and K. Shimamoto (NAIST, Japan) for RNAi vectors. We also thank Prof. C.D. Han for 35S::GFP transgenic rice plants and technical help. We are grateful to Kyung-Sook Lee for preparing transgenic rice lines and the RGRC-NIAS (Japan) and Rural Development Administration (Republic of Korea) for rice cDNA and seeds. This work was supported by grants from the Next-Generation BioGreen 21 Program (PJ007978), Rural Development Administration, Republic of Korea and a Korea University Grant (to J.-K.Kim) and by the BK 21 program (to S.-K.Kim).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeong Hwan Lee or Jeong-Kook Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Park, HY., Jang, Y.H. et al. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice. Planta 243, 563–576 (2016). https://doi.org/10.1007/s00425-015-2426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2426-x

Keywords

Navigation