Skip to main content

Advertisement

Log in

Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Non-optimal ammonium levels significantly alter root architecture, anatomy and root permeabilities for water and nutrient ions. Higher ammonium levels induced strong apoplastic barriers whereas it was opposite for lower levels.

Application of nitrogen fertilizer increases crop productivity. However, non-optimal applications can have negative effects on plant growth and development. In this study, we investigated how different levels of ammonium (NH4 +) [low (30 or 100 μM) or optimum (300 μM) or high (1000 or 3000 μM)] affect physio-chemical properties of 1-month-old, hydroponically grown rice roots. Different NH4 + treatments markedly altered the root architecture and anatomy. Plants grown in low NH4 + had the longest roots with a weak deposition of suberised and lignified apoplastic barriers, and it was opposite for plants grown in high NH4 +. The relative expression levels of selected suberin and lignin biosynthesis candidate genes, determined using qRT-PCR, were lowest in the roots from low NH4 +, whereas, they were highest for those grown in high NH4 +. This was reflected by the suberin and lignin contents, and was significantly lower in roots from low NH4 + resulting in greater hydraulic conductivity (Lp r) and solute permeability (P sr) than roots from optimum NH4 +. In contrast, roots grown at high NH4 + had markedly greater suberin and lignin contents, which were reflected by strong barriers. These barriers significantly decreased the P sr of roots but failed to reduce the Lp r below those of roots grown in optimum NH4 +, which can be explained in terms of the physical properties of the molecules used and the size of pores in the apoplast. It is concluded that, in rice, non-optimal NH4 + levels differentially affected root properties including Lp r and P sr to successfully adapt to the changing root environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CBs:

Casparian bands

CC:

Central cylinder

EN:

Endodermis

EX:

Exodermis

Lp r :

Hydraulic conductivity

OPR:

Outer part of the root

Psr:

Solute permeability

SL:

Suberin lamellae

References

  • Balkos KD, Britto DT, Kronzucker HJ (2010) Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. 1R-72). Plant, Cell Environ 33:23–34

    CAS  Google Scholar 

  • Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Article  CAS  Google Scholar 

  • Brundrett MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol. Biotech Histochem 66:111–116

    Article  PubMed  CAS  Google Scholar 

  • Bu YY, Takano T, Nemoto K, Liu SK (2011) Research progress of ammonium transporter in rice plants. Genomics Appl Biol. doi:10.5376/gab.2011.02.0003

    Google Scholar 

  • Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC (2001) Cell wall architecture of the elongating maize coleoptile. Plant Physiol 127:551–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen G, Guo H, Kronzucker H, Shi WM (2013) Nitrogen use efficiency (NUE) in rice links to NH4 + toxicity and futile NH4 + cycling in roots. Plant Soil 369:351–363

    Article  CAS  Google Scholar 

  • Clarkson DT (1991) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 417–453

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant, Cell Environ 26:17–36

    Article  CAS  Google Scholar 

  • Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. J Exp Bot 49:1431–1436

    Article  CAS  Google Scholar 

  • De Simone O, Haase K, Müller E, Junk WJ, Hartmann K, Schreiber L, Schmidt W (2003) Apoplastic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiol 132:206–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    Article  CAS  Google Scholar 

  • Fleck AT, Nye T, Repenning C, Stahl F, Zahn M, Schenk M (2011) Silicon enhances suberization and lignification in roots of rice (Oryza sativa). J Exp Bot 62:2001–2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ford CW, Hartley RD (1990) Cyclodimers of p-coumaric and ferulic acids in the cell walls of tropical grasses. J Sci Food Agric 50:29–43

    Article  CAS  Google Scholar 

  • Franke R, Schreiber L (2007) Suberin: a biopolyester forming apoplastic plant interfaces. Curr Opin Plant Biol 10:252–259

    Article  PubMed  CAS  Google Scholar 

  • Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L (2005) Apoplastic polyesters in Arabidopsis surface tissues: a typical suberin and a particular cutin. Phytochemistry 66:2643–2658

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite AJ, Armstrong W, Colmer TD (2008) Assessment of O2 diffusivity across the barrier to radial O2 loss in adventitious roots of Hordeum marinum. New Phytol 179:405–416

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  PubMed  CAS  Google Scholar 

  • Johnson DB, Moore WE, Zank C (1961) The spectrophotometric determination of lignin in small wood samples. J Tech Assoc Pulp Paper Ind 44:793–798

    CAS  Google Scholar 

  • Kant S, Bi Y-M, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62:1499–1508

    Article  PubMed  CAS  Google Scholar 

  • Kirk GJD, Kronzucker HJ (2005) The potential for nitrification and nitrate uptake in the rhizospheres of wetland plants: a modelling study. Ann Bot 96:639–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koch KE (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1980) Cutin, suberin and waxes. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 4. Academic Press, New York, pp 541–645

    Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biotechnol 71:1–49

    PubMed  CAS  Google Scholar 

  • Kolattukudy PE, Agrawal VP (1974) Structure and the composition of the aliphatic components of potato tuber skin. Lipids 9:682–691

    Article  CAS  Google Scholar 

  • Kolattukudy PE, Espelie KE (1989) Chemistry, biochemistry and functions of suberin associated waxes. In: Rowe JW (ed) Natural products of woody plants I. Springer-Verlag, New York, pp 235–287

    Google Scholar 

  • Kotula L, Ranathunge K, Schreiber L, Steudle E (2009) Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J Exp Bot 60:2155–2167

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK (2009) The role of apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 230:119–134

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy P, Ranathunge K, Nayak S, Schreiber L, Mathew MK (2011) Root apoplastic barriers block Na+ transport to the shoot in rice (Oryza sativa L.). J Exp Bot 62:4215–4228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (1999) Nitrate-ammonium synergism in rice: a subcellular analysis. Plant Physiol 119:1041–1046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (2000) Comparative kinetic analysis of ammonium and nitrate acquisition by tropical lowland rice: implications for rice cultivation and yield potential. New Phytol 145:471–476

    Article  CAS  Google Scholar 

  • Kutscha NP, Gray JR (1972) The suitability of certain stains for studying lignification in balsam fir Abies balsamea L. Mill. Technical Bulletin 53. Life Sciences and Agriculture Experiment Station, University of Maine, Orona, USA

  • Lewis OAM, James DM, Hewitt EJ (1982) Nitrogen assimilation in barley (Hordeum vulgare L. cv. Mazurka) in response to nitrate and ammonium nutrition. Ann Bot 49:39–49

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lulai EC, Corsini DL (1998) Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound healing. Physiol Mol Plant Biol 53:209–222

    Article  CAS  Google Scholar 

  • Lynch J, St. Clair SB (2004) Mineral stress: the missing link in understanding how global climate change will affect plants in real world soil. Field Crop Res 90:101–115

    Article  Google Scholar 

  • Ma F, Peterson CA (2003) Current insights into the development, structure and chemistry of the endodermis and exodermis of roots. Can J Bot 80:405–421

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, San Diego

    Google Scholar 

  • Matzke K, Riederer M (1991) A comparative study into the chemical constitution of cutins and suberins from Picea abies (L.) Karst., Quercus robur L. Fagus silvatica L. Planta 185:233–245

    CAS  Google Scholar 

  • Miyamoto N, Steudle E, Hirasawa T, Lafitte R (2001) Hydraulic conductivity of rice roots. J Exp Bot 52:1835–1846

    Article  PubMed  CAS  Google Scholar 

  • Naseer S, Lee Y, Lapierre C, Franke R, Nawrath C, Geldner N (2012) Casparian strip diffusion barrier in Arabidopsis is made of lignin polymer without suberin. Proc Natl Acad Sci USA 109:10101–10106

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen TH, Krapp A, Röper-Schwarz U, Stitt M (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by nitrogen and phosphate. Plant, Cell Environ 21:443–455

    Article  CAS  Google Scholar 

  • Nobel PS (1999) Physicochemical and environmental plant physiology. Academic Press Inc, San Diego

    Google Scholar 

  • Peterson CA (1987) The exodermal Casparian band of onion blocks apoplastic movement of sulphate ions. J Exp Bot 32:2068–2081

    Article  Google Scholar 

  • Peterson CA, Cholewa E (1998) Structural modifications of the apoplast and their potential impact on ion uptake. Proc German Society of Plant Nutrition, Kiel, Germany. J Plant Nutr Soil Sci 161:521–531

    CAS  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, New York, pp 9–45

    Chapter  Google Scholar 

  • Ranathunge K, Schreiber L (2011) Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. J Exp Bot 62:1961–1974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranathunge K, Kotula L, Steudle E, Lafitte R (2004) Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J Exp Bot 55:433–447

    Article  PubMed  CAS  Google Scholar 

  • Ranathunge K, Steudle E, Lafitte R (2005) Blockage of apoplastic bypass-flow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell. Plant, Cell Environ 28:121–133

    Article  Google Scholar 

  • Ranathunge K, Lin J, Steudle E, Schreiber L (2011a) Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant, Cell Environ 34:1223–1240

    Article  CAS  Google Scholar 

  • Ranathunge K, Schreiber L, Franke R (2011b) Suberin research in the genomics era-New interest for an old polymer. Plant Sci 180:399–413

    Article  PubMed  CAS  Google Scholar 

  • Ranathunge K, El-kereamy A, Gidda S, Bi Y-M, Rothstein SJ (2014) AMT1;1 transgenic rice plants with enhanced NH4 + permeability show superior growth and higher yield under optimal and sub-optimal NH4 + conditions. J Exp Bot 65:965–979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robards AW, Robb ME (1972) Uptake and binding of uranyl ions of barley roots. Science 178:980–982

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L (1996) Chemical composition of Casparian strips isolated from Clivia miniata Reg. roots: evidence for lignin. Planta 199:596–601

    Article  CAS  Google Scholar 

  • Schreiber L, Breiner HW, Riederer M, Duggelin M, Guggenheim R (1994) The Casparian band of Clivia miniata Reg.: isolation, fine structure and chemical nature. Bot Acta 107:353–361

    Article  CAS  Google Scholar 

  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267–1280

    CAS  Google Scholar 

  • Schreiber L, Franke L, Hartmann K (2005a) Effects of NO3 deficiency and NaCl stress on suberin deposition in rhizo- and hypodermal (RHCW) and endodermal cell walls (ECW) of castor bean (Ricinus communis L.) roots. Plant Soil 269:333–339

    Article  CAS  Google Scholar 

  • Schreiber L, Franke R, Hartmann KD, Ranathunge K, Steudle E (2005b) The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). J Exp Bot 56:1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Shiono K, Ando M, Nishiuchi S, Takahashi H, Watanabe K, Ranathunge K, Franke R, Nishizawa NK, Schreiber L, Nakazono M, Kato K (2014) RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa L.). Plant J 80:40–51

    Article  PubMed  CAS  Google Scholar 

  • Singh C, Jacobson L (1977) The radial and longitudinal path of ion movement in roots. Physiol Plant 41:59–64

    Article  CAS  Google Scholar 

  • Smil V (1998) Food, energy, and the environment: Implication for Asia’s rice agriculture. In: Dowling NG, Greenfield SM, Fischer KS (eds) Sustainability of rice in the global food system. Int Rice Research Institute, Manila, pp 321–331

    Google Scholar 

  • Steudle E (2000) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56

    Article  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Steudle E, Oren R, Schulze ED (1987) Water transport in maize roots. Plant Physiol 84:1220–1232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tabuchi M, Abiko T, Yamaya T (2007) Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot 58:2319–2327

    Article  PubMed  CAS  Google Scholar 

  • Wang MY, Siddiqi MY, Ruth TJ, Glass ADM (1993) Ammonium uptake by rice roots. I. Fluxes and subcellular distribution of 13 NH4 +. Plant Physiol 103:1249–1258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weng JK, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci USA 105:7887–7892

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams JF, Mutters RG, Greer CA (2010) Rice nutrient management in California. Agriculture and Natural Resources, University of California, Publication No. 3516:136

  • Yeo AR, Yeo ME, Flowers TJ (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38:1141–1153

    Article  CAS  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice, 3rd edn. The International Rice Research Institute, Manila

    Google Scholar 

  • Yu TR (1985) Soil and plants. In: Yu TR (ed) Physical chemistry of paddy soils. Science Press, Beijing, pp 197–217

    Google Scholar 

  • Zeier J, Schreiber L (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata. Plant Physiol 113:1223–1231

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zeier J, Schreiber L (1998) Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledonous species: chemical composition in relation to fine structure. Planta 206:349–361

    Article  CAS  Google Scholar 

  • Zimmermann HM, Hartmann KD, Schreiber L, Steudle E (2000) Chemical composition of apoplastic transport barriers in relation to root hydraulic conductivity of maize (Zea mays L.) roots. Planta 210:302–311

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thakshila de Zoysa for help with plant care and data collection. This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) for SJR and the German Research Foundation (DFG Grant SCHR 506/12-1) for LS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosala Ranathunge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranathunge, K., Schreiber, L., Bi, YM. et al. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Planta 243, 231–249 (2016). https://doi.org/10.1007/s00425-015-2406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2406-1

Keywords

Navigation