Skip to main content
Log in

The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Increasing soil salinity reduces crop yields worldwide, with rice being particularly affected. We have examined the correlation between apoplastic barrier formation in roots, Na+ uptake into shoots and plant survival for three rice (Oryza sativa L.) cultivars of varying salt sensitivity: the salt-tolerant Pokkali, moderately tolerant Jaya and sensitive IR20. Rice plants grown hydroponically or in soil for 1 month were subjected to both severe and moderate salinity stress. Apoplastic barriers in roots were visualized using fluorescence microscopy and their chemical composition determined by gas chromatography and mass spectrometry. Na+ content was estimated by flame photometry. Suberization of apoplastic barriers in roots of Pokkali was the most extensive of the three cultivars, while Na+ accumulation in the shoots was the least. Saline stress induced the strengthening of these barriers in both sensitive and tolerant cultivars, with increase in mRNAs encoding suberin biosynthetic enzymes being detectable within 30 min of stress. Enhanced barriers were detected after several days of moderate stress. Overall, more extensive apoplastic barriers in roots correlated with reduced Na+ uptake and enhanced survival when challenged with high salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FW:

Fresh weight

DW:

Dry weight

OPR:

Outer part of the root

CB:

Casparian band

SL:

Suberin lamellae

References

  • Akbar M, Ponnamperuma FN (1982) Saline soil of South and Southeast Asia as potential rice lands. In: IRRI (ed) Rice research strategies for the future. Manila, Philippines, pp 256–281

    Google Scholar 

  • Amtmann A, Laurie S, Leigh RA, Sanders D (1997) Multiple inward channels provide flexibility on Na+/K+ discrimination at the plasma membrane of barley suspension culture cells. J Exp Bot 48:481–497

    CAS  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable A. thaliana potassium channel in S. cerevisiae. Proc Natl Acad Sci USA 89:3736–3740

    Article  PubMed  CAS  Google Scholar 

  • Anil VS, Krishnamurthy P, Kuruvilla S, Sucharitha K, Thomas G, Mathew MK (2005) Regulation of the uptake and distribution of Na+ in shoots of rice (Oryza sativa) variety Pokkali: role of Ca2+ in salt tolerance response. Physiol Plant 124:451–464

    Article  CAS  Google Scholar 

  • Anil VS, Krishnamurthy H, Mathew MK (2007a) Limiting cytosolic Na+ confers salt tolerance to rice cells in culture: a two-photon microscopy study of SBFI loaded cells. Physiol Plant 129:607–621

    Article  CAS  Google Scholar 

  • Anil VS, Krishnamurthy H, Mathew MK (2007b) Na+ efflux across the plasma membrane contributes to salt tolerance of rice cells in culture. Proc Indian Natl Sci Acad 73:43–50

    CAS  Google Scholar 

  • Armstrong J, Armstrong W (2001) Rice and Phragmites: effects of organic acids on growth, root permeability and radial oxygen loss to the rhizosphere. Am J Bot 88:1359–1370

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W (2005) Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot (Lond) 96:625–638

    Article  CAS  Google Scholar 

  • Aslam S, Imamul Huq SM, Kawai S, Islam A (2002) Effects of applying calcium salts to coastal saline soils on growth and mineral nutrition of rice varieties. J Plant Nutr 25:561–576

    Article  Google Scholar 

  • Bernards MA, Summerhurst DK, Razem FA (2004) Oxidases, peroxidases and hydrogen peroxide: the suberin connection. Phytochem Rev 3:113–126

    Article  CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Brundrette MC, Enstone DE, Peterson CA (1988) A berberine-aniline blue fluorescent staining procedure for suberin, ligninn and callose in plant tissues. Protoplasma 146:133–142

    Article  Google Scholar 

  • Brundrette MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol. Biotech Histochem 66:111–116

    Article  Google Scholar 

  • Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683

    Article  PubMed  CAS  Google Scholar 

  • Castillo E, To PT, Huynh TTT, Thai NHT, Tran TKP (2003) Phenological and physiological responses of a rice cultivar to level and timing of salinity stress. In: Preston N, Clayton H (eds) Rice-shrimp farming in the Mekong Delta: biophysical and socioeconomic issues. ACIAR Technical Report, pp 89–101

  • Cheeseman JM, Bloebaum P, Wickens LK (1985) Short term 22Na+ and 42 K+ uptake in intact, mid-vegetative Spergularia marina plants. Physiol Plant 65:460–466

    Article  CAS  Google Scholar 

  • Cramer GR, Lauchli A, Polito VS (1985) Displacement of Ca by Na from the plasmalemma of root cells: a primary response to salt stress? Plant Physiol 79:207–211

    Article  PubMed  CAS  Google Scholar 

  • Cramer GR, Lynch J, Lauchli A, Epstein E (1987) Influx of Na, K, and Ca into roots of salt-stressed cotton seedlings: effects of supplemental Ca. Plant Physiol 83:510–516

    Article  PubMed  CAS  Google Scholar 

  • Damus M, Peterson RL, Enstone DE, Peterson CA (1997) Modifications of cortical cell walls in roots of seedless vascular plants. Bot Acta 110:190–195

    Google Scholar 

  • Davenport RJ, Tester M (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122:823–834

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through non-selective cation channels in the plasma membrane of protoplasts from Arabidopsis thaliana roots. Plant Physiol 128:379–387

    Article  PubMed  CAS  Google Scholar 

  • Enstone DE, Peterson CA (1998) Effects of exposure to humid air on epidermal viability and suberin deposition in maize (Zea mays L.) roots. Plant Cell Environ 21:837–844

    Article  CAS  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function and responses to the environment. J Plant Growth Regul 21:335–351

    Article  Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principles and perspectives. Wiley, New York

    Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA (2001) Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil 231:1–9

    Article  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1981) Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.). New Phytol 88:363–373

    Article  CAS  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325

    Article  Google Scholar 

  • Franke R, Briesen I, Wojciechowski T, Faust A, Yephremov A, Nawrath C, Schreiber L (2005) Apoplastic polyesters in Arabidopsis surface tissues—a typical suberin and a particular cutin. Phytochemistry 66:2643–2658

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochica H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    Article  PubMed  CAS  Google Scholar 

  • Garcia A, Rizzo CA, Ud-din J, Bartos SL, Senadhira D, Flowers TJ, Yeo AR (1997) Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant Cell Environ 20:1167–1174

    Article  CAS  Google Scholar 

  • Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani UR, Munoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003) Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51:71–81

    Article  PubMed  CAS  Google Scholar 

  • Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29:1970–1979

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hofer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R (2008) The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59:2347–2360

    Article  PubMed  Google Scholar 

  • James RA, Munns R, von Caemmerer S, Trejo C, Miller C, Condon TA (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl in salt-affected barley and durum wheat. Plant Cell Environ 29:2185–2197

    Article  PubMed  CAS  Google Scholar 

  • Kader MA, Lindberg S (2005) Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI. J Exp Bot 56:3149–3158

    Article  PubMed  CAS  Google Scholar 

  • Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219:41–47

    Article  PubMed  CAS  Google Scholar 

  • Khatun S, Flowers TJ (1995a) The estimation of pollen viability in rice. J Exp Bot 46:151–154

    Article  CAS  Google Scholar 

  • Khatun S, Flowers TJ (1995b) Effects of salinity on seed set in rice. Plant Cell Environ 18:61–67

    Article  Google Scholar 

  • Khatun S, Rizzo CA, Flowers TJ (1995) Genotypic variations in the effect of salinity on fertility in rice. Plant Soil 173:239–250

    Article  CAS  Google Scholar 

  • Kolattukudy PE (1984) Biochemistry and function of cutin and suberin. Can J Bot 62:2918–2933

    Article  CAS  Google Scholar 

  • Kolattukudy PE, Agarwal VP (1974) Structure and composition of the aliphatic components of potato tuber skin. Lipids 9:682–691

    Article  CAS  Google Scholar 

  • Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT (2006) The cytosolic Na+: K+ ratio does not explain salinity-induced growth impairment in barley: a dual-tracer study using 42K+ and 24Na+. Plant Cell Environ 29:2228–2237

    Article  PubMed  CAS  Google Scholar 

  • Lauchli A, James RA, Huang CX, McCully M, Munns R (2008) Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ 31:1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Lynch J, Cramer GR, Lauchli A (1987) Salinity reduces membrane-associated calcium in corn root protoplasts. Plant Physiol 83:390–394

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Peterson CA (2003) Current insights into the development, structure and chemistry of the endodermis and exodermis of roots. Can J Bot 81:405–421

    Article  CAS  Google Scholar 

  • Malagoli P, Britto DT, Schulze LM, Kronzucker HJ (2008) Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.): kinetics, energetics, and relationship to salinity tolerance. J Exp Bot 59:4109–4117

    Article  PubMed  CAS  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot SJ (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • Muhammad S, Akbar M, Neue HU (1987) Effect of Na/Ca and Na/K ratios in saline culture solution on the growth and mineral nutrition of rice (Oryza sativa L.). Plant Soil 104:57–62

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (1999) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • Oertli JJ (1968) Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agrochimica 12:461–469

    Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  PubMed  CAS  Google Scholar 

  • Perumulla CJ, Peterson CA (1986) Deposition of Casparian bands and suberin lamellae in the exodermis and endodermis of young corn and onion roots. Can J Bot 64:1873–1878

    Article  Google Scholar 

  • Perumulla CJ, Peterson CA, Enstone DE (1990) A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniserate hypodermis and epidermis. Bot J Linn Soc 103:93–112

    Article  Google Scholar 

  • Peterson CA, Enstone DE (1996) Function of passage cells in the endodermis and exodermis of roots. Physiol Plant 97:592–598

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1984) Straw as a source of nutrients for wetland rice. In: Organic matter and rice. IRRI, Los Banos, Philippines, pp 117–136

  • Ranathunge K, Steudle E, Lafitte R (2005) Blockage of apoplastic bypass-flow of water in rice roots by insoluble salt precipitates analogous to a Pfeffer cell. Plant Cell Environ 28:121–133

    Article  Google Scholar 

  • Reinhardt DH, Rost TL (1995) Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environ Exp Bot 35:563–574

    Article  CAS  Google Scholar 

  • Rhodales JD, Lovedy YJ (1990) Salinity in irrigated agriculture. In: Steward BA, Nielsen DR (eds) Irrigation of agricultural crops. American Society of Civil Engineers, Madison, pp 1089–1142

    Google Scholar 

  • Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50:1267–1280

    Article  CAS  Google Scholar 

  • Schreiber L, Franke R, Hartmann K (2005a) Effects of NO3 deficiency and NaCl stress on suberin deposition in rhizo- and hypodermal (RHCW) and endodermal cell wall (ECW) of castor bean (Ricinus communis L.) roots. Plant Soil 269:333–339

    Article  CAS  Google Scholar 

  • Schreiber L, Franke R, Hartmann KD, Ranathunge K, Steudle E (2005b) The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). J Exp Bot 56:1427–1436

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Ward JM, Gassmann W (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 23:441–471

    Article  PubMed  CAS  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665

    Article  PubMed  CAS  Google Scholar 

  • Shannon MC, Grieve CM, Francois LE (1994) Whole plant response to salinity. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York, pp 199–244

    Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnol 21:81–85

    Article  CAS  Google Scholar 

  • Song JQ, Fujiyama H (1996) Difference in response of rice and tomato subjected to sodium salinization to the addition of calcium. Soil Sci Plant Nutr 42:503–510

    Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    Article  PubMed  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot (Lond) 91:503–527

    Article  CAS  Google Scholar 

  • Tyerman SD, Skerrett M (1999) Root ion channels and salinity. Sci Hortic 78:175–235

    Article  CAS  Google Scholar 

  • White PJ (1999) The molecular mechanism of sodium influx to root cells. Trends Plant Sci 4:245–246

    Article  PubMed  Google Scholar 

  • Yadav R, Flowers TJ, Yeo AR (1996) The involvement of the transpirational bypass flow in sodium uptake by high and low sodium transporting lines of rice developed through intravarietal selection. Plant Cell Environ 19:329–336

    Article  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  PubMed  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1983) Varietal differences in the toxicity of sodium ions in rice leaves. Physiol Plant 59:189–195

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1985) The absence of an effect of the Na/Ca ratio on sodium chloride uptake by rice (Oryza sativa L.). New Phytol 99:81–90

    Article  CAS  Google Scholar 

  • Yeo AR, Yeo ME, Flowers TJ (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38:1141–1153

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Zeier J, Schreiber L (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata (identification of the biopolymers lignin and suberin). Plant Physiol 113:1223–1231

    PubMed  CAS  Google Scholar 

  • Zeier J, Schreiber L (1998) Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledonous species: chemical composition in relation to fine structure. Planta 206:349–361

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Advice and help rendered by Prof. M. Udayakumar and M. S. Sheshashayee, Department of Crop Physiology, University of Agricultural Sciences, Bangalore, is acknowledged. Financial support by Council for Scientific and Industrial Research (Senior Research Fellowship for PK), Government of India and Alexander-von-Humboldt Foundation, Germany (postdoctoral fellowship to KR) and a DST-DAAD grant (Travel Fellowship to PK) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Mathew.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1 (PDF 78 kb)

Supplementary Figure 2 (PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamurthy, P., Ranathunge, K., Franke, R. et al. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 230, 119–134 (2009). https://doi.org/10.1007/s00425-009-0930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0930-6

Keywords

Navigation