Skip to main content
Log in

Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Light exclusion reduces the concentration and modifies the composition of grape anthocyanins, by altering the expression of genes involved in anthocyanin biosynthesis and transport, in a cultivar- and tissue-specific manner.

Unlike most grapes, teinturier grapes accumulate anthocyanins both in skin and flesh. However, the concentration and composition of anthocyanins in both tissues differ, providing a valuable system to study tissue-specific regulation of anthocyanin synthesis. Furthermore, little is known about the mechanisms controlling the sensitivity of anthocyanin accumulation to light. Here, light was excluded from Gamay (white-fleshed) and Gamay Fréaux (teinturier mutant) berries throughout berry development. Under light-exposed conditions, the skin of Gamay Fréaux accumulated the highest level of anthocyanins, followed by the skin of Gamay, while the pulp of Gamay Fréaux had much lower anthocyanins than the skins. Network analysis revealed the same order on the number of significant correlations among metabolites and transcripts in the three colored tissues, indicating a higher connectivity that reflects a higher efficiency of the anthocyanin pathway. Compared to light conditions, light exclusion reduced the total amount of anthocyanins, most severely in the skin of Gamay and to a lesser extent in the flesh and skin of Gamay Fréaux. Coordinated decrease in the transcript abundance of structural, regulatory and transporter genes by light exclusion correlated with the reduced anthocyanin concentration in a cultivar- and tissue-specific manner. Moreover, light exclusion increased the ratio of dihydroxylated to trihydroxylated anthocyanins, in parallel with F3′H and F3′5′H transcript amounts. Sugars and ABA only play a limited role in the control of anthocyanin synthesis in the berries, in contrast with what has been described in cell suspensions. This study provides novel insights into the regulation of anthocyanin in wild type and teinturier cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AM1:

Anthocyanin multidrug and toxic extrusion (MATE)-type transporter 1

AM3:

Anthocyanin multidrug and toxic extrusion (MATE)-type transporter 3

AOMT:

Anthocyanin O-methyltransferase

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

Cy:

Cyanidin

CytoB5:

Cytochrome b5

DAF:

Days after flowering

DFR:

Dihydroflavonol reductase

F3′5′H:

Flavonoid 3′,5′-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

GST:

Glutathione S-transferase

NCED:

9-Cis-epoxycarotenoid dioxygenase

PCA:

Principal component analysis

Pn:

Peonidin

UFGT:

UDP-glucose flavonoid 3-O-glucosyltransferase

References

  • Ageorges A, Fernandez L, Vialet S, Merdinoglu D, Terrier N, Romieu C (2006) Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. Plant Sci 170:372–383

    Article  CAS  Google Scholar 

  • Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067–1080

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc B Met 57:289–300

    Google Scholar 

  • Bogs J, Ebadi A, McDavid D, Robinson S (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279–291

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bogs J, Jaffe F, Takos A, Walker A, Robinson S (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boss P, Davies C, Robinson S (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castellarin S, Di Gaspero G (2007) Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines. BMC Plant Biol 7:1–10

    Article  Google Scholar 

  • Castellarin S, Matthews M, Gaspero G, Gambetta G (2007a) Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101–112

    Article  PubMed  CAS  Google Scholar 

  • Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G (2007b) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ 30:1381–1399

    Article  PubMed  CAS  Google Scholar 

  • Castellarin SD, Gambetta GA, Wada H, Shackel KA, Matthews MA (2011) Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. J Exp Bot 62:4345–4354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Castillo-Muñoz N, Mn Fernández-González, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2009) Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. J Agric Food Chem 57:7883–7891

    Article  PubMed  Google Scholar 

  • Cavallini E, Zenoni S, Finezzo L, Guzzo F, Zamboni A, Avesani L, Tornielli GB (2014) Functional diversification of grapevine MYB5a and MYB5b in the control of flavonoid biosynthesis in a Petunia anthocyanin regulatory mutant. Plant Cell Physiol 55:517–534

    Article  PubMed  CAS  Google Scholar 

  • Chorti E, Guidoni S, Ferrandino A, Novello V (2010) Effect of different cluster sunlight exposure levels on ripening and anthocyanin accumulation in Nebbiolo grapevines. Am J Enol Vitic 61:23–30

    CAS  Google Scholar 

  • Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I et al (2007) Integration of biological networks and gene expression data using cytoscape. Nat Protoc 2:2366–2382

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Conn S, Curtin C, Bézier A, Franco C, Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot 59:3621–3634

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Conn S, Franco C, Zhang W (2010) Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures. Planta 231:1343–1360

    Article  PubMed  CAS  Google Scholar 

  • Cormier F, Crevier HA, Do CB (1990) Effects of sucrose concentration on the accumulation of anthocyanins in grape (Vitis vinifera) cell suspension. Can J Bot 68:1822–1825

    Article  CAS  Google Scholar 

  • Cortell JM, Kennedy JA (2006) Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) Pinot Noir fruit and extraction in a model system. J Agric Food Chem 54:8510–8520

    Article  PubMed  CAS  Google Scholar 

  • Dai ZW, Meddar M, Renaud C, Merlin I, Hilbert G, Delrot S, Gomès E (2014) Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. J Exp Bot 65:4665–4677

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vetten N, ter Horst J, van Schaik H-P, de Boer A, Mol J, Koes R (1999) A cytochrome b5 is required for full activity of flavonoid 3′,5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc Natl Acad Sci USA 96:778–783

    Article  PubMed  PubMed Central  Google Scholar 

  • Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J-P, Merillon J-M, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140:499–511

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon J-M, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Do CB, Cormier F (1991) Effects of low nitrate and high sugar concentrations on anthocyanin content and composition of grape (Vitis vinifera L.) cell suspension. Plant Cell Rep 9:500–504

    CAS  Google Scholar 

  • Downey MO, Harvey JS, Robinson SP (2004) The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust J Grape Wine Res 10:55–73

    Article  CAS  Google Scholar 

  • Downey MO, Dokoozlian NK, Krstic MP (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:257–268

    CAS  Google Scholar 

  • Falginella L, Castellarin S, Testolin R, Gambetta G, Morgante M, Di Gaspero G (2010) Expansion and subfunctionalisation of flavonoid 3′,5′-hydroxylases in the grapevine lineage. BMC Genom 11:562

    Article  Google Scholar 

  • Falginella L, Di Gaspero G, Castellarin S (2012) Expression of flavonoid genes in the red grape berry of ‘Alicante Bouschet’ varies with the histological distribution of anthocyanins and their chemical composition. Planta 236:1037–1051

    Article  PubMed  CAS  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fournier-Level A, Hugueney P, Verries C, This P, Ageorges A (2011) Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.). BMC Plant Biol 11:179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD (2010) Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta 232:219–234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gomez L, Bancel D, Rubio E, Vercambre G (2007) The microplate reader: an efficient tool for the separate enzymatic analysis of sugars in plant tissues–validation of a micro-method. J Sci Food Agric 87:1893–1905

    Article  CAS  Google Scholar 

  • Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verriès C, Souquet JM, Mazauric JP, Klein M, Cheynier V, Ageorges A (2009) Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol 150:402–415

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A (2011) In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J 67:960–970

    Article  PubMed  CAS  Google Scholar 

  • Guan L, Li JH, Fan PG, Chen S, Fang JB, Li S-H, Wu BH (2012) Anthocyanin accumulation in various organs of a teinturier grape cultivar (V. vinifera L.) during the growing season. Am J Enol Vitic 63:177–184

    Article  CAS  Google Scholar 

  • Guan L, Li JH, Fan PG, Li SH, Fang JB, Dai ZW, Delrot S, Wang LJ, Wu BH (2014) Regulation of anthocyanin biosynthesis in tissues of a teinturier grape cultivar under sunlight exclusion. Am J Enol Vitic. doi:10.5344/ajev.2014.14029

    Google Scholar 

  • He F, Mu L, Yan GL, Liang NN, Pan QH, Wang Y, Reeves MJ, Duan CQ (2010a) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091

    Article  PubMed  CAS  Google Scholar 

  • He JJ, Liu YX, Pan QH, Cui XY, Duan CQ (2010b) Different anthocyanin profiles of the skin and the pulp of Yan73 (Muscat Hamburg × Alicante Bouschet) grape berries. Molecules 15:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka S, Onodera H, Kawai Y, Kubo T, Itoh H, Wada R (2001) ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro. Sci Hortic Amst 90:121–130

    Article  CAS  Google Scholar 

  • Hugueney P, Provenzano S, Verriès C, Ferrandino A, Meudec E, Batelli G, Merdinoglu D, Cheynier V, Schubert A, Ageorges A (2009) A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol 150:2057–2070

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Human MA, Bindon KA (2008) Interactive effect of ethephon and shading on the anthocyanin composition of Vitis vinifera L. cv. Crimson seedless. S Afr J Enol Vitic 29:50–58

    CAS  Google Scholar 

  • Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape composition and wine quality—a review. Am J Enol Vitic 44:409–430

    CAS  Google Scholar 

  • Jeong S, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252

    Article  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Hashizume K, Esaka M (2006) Expression of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Sci 170:61–69

    Article  CAS  Google Scholar 

  • Kliewer WM (1977) Influence of temperature, solar radiation and nitrogen on coloration and composition of Emperor grapes. Am J Enol Vitic 28:96–103

    CAS  Google Scholar 

  • Kovinich N, Kayanja G, Chanoca A, Riedl K, Otegui M, Grotewold E (2014) Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta 240:931–940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koyama K, Goto-Yamamoto N (2008) Bunch shading during different developmental stages affects the phenolic biosynthesis in berry skins of ‘Cabernet Sauvignon’ grapes. J Am Soc Hortic Sci 133:743–753

    Google Scholar 

  • Kuhn N, Guan L, Dai ZW, Wu B-H, Lauvergeat V, Gomès E, Li SH, Godoy F, Arce-Johnson P, Delrot S (2014) Berry ripening: recently heard through the grapevine. J Exp Bot 65:4543–4559

    Article  PubMed  Google Scholar 

  • Larronde F, Krisa S, Decendit A, Chèze C, Deffieux G, Mérillon M (1998) Regulation of polyphenols production in Vitis vinifera cell suspension cultures by sugars. Plant Cell Rep 17:946–950

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R (2006) Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 54:7692–7702

    Article  PubMed  CAS  Google Scholar 

  • Matus J, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazza G (1995) Anthocyanins in grapes and grape products. Crit Rev Food Sci Nutr 35:341–371

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/

  • Reid K, Olsson N, Schlosser J, Peng F, Lund S (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Ristic R, Downey MO, Iland PG, Bindon K, Francis IL, Herderich M, Robinson SP (2007) Exclusion of sunlight from Shiraz grapes alters wine colour, tannin and sensory properties. Aust J Grape Wine Res 13:53–65

    Article  CAS  Google Scholar 

  • Roubelakis-Angelakis KA, Kliewer WM (1986) Effects of exogenous factors on phenylalanine ammonia-lyase activity and accumulation of anthocyanins and total phenolics in grape berries. Am J Enol Vitic 37:275–280

    CAS  Google Scholar 

  • Rustioni L, Di Meo F, Guillaume M, Failla O, Trouillas P (2013) Tuning color variation in grape anthocyanins at the molecular scale. Food Chem 141:4349–4357

    Article  PubMed  CAS  Google Scholar 

  • Saigne-Soulard C, Richard T, Mérillon JM, Monti JP (2006) 13C NMR analysis of polyphenol biosynthesis in grape cells: impact of various inducing factors. Anal Chim Acta 563:137–144

    Article  CAS  Google Scholar 

  • Sarni P, Fulcrand H, Souillol V, Souquet J, Cheynier V (1995) Mechanisms of anthocyanin degradation in grape must-like model solutions. J Sci Food Agric 69:385–391

    Article  CAS  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Spayd SE, Tarara JM, Ferguson JC (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera cv Merlot berries. Am J Enol Vitic 53:171–182

    CAS  Google Scholar 

  • Speirs J, Binney A, Collins M, Edwards E, Loveys B (2013) Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). J Exp Bot 64:1907–1916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tanaka Y, Brugliera F (2013) Flower colour and cytochromes P450. Philos Trans R Soc B Biol Sci 368:20120432

    Article  Google Scholar 

  • Tarara JM, Lee J, Spayd SE, Scagel CF (2008) Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am J Enol Vitic 59:235–247

    CAS  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vitrac X, Larronde F, Krisa S, Decendit A, Deffieux G, Mérillon JM (2000) Sugar sensing and Ca2+-calmodulin requirement in Vitis vinifera cells producing anthocyanins. Phytochemistry 53:659–665

    Article  PubMed  CAS  Google Scholar 

  • Weaver RJ, Mccune SB (1960) Influence of light on color development in Vitis vinifera grapes. Am J Enol Vitic 11:179–184

    CAS  Google Scholar 

  • Zheng Y, Li JH, Xin HP, Wang N, Guan L, Wu BH, Li SH (2013) Anthocyanin profile and gene expression in berry skin of two red Vitis vinifera grape cultivars that are sunlight dependent versus sunlight independent. Aust J Grape Wine Res 19:238–248

    Article  CAS  Google Scholar 

  • Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci 5:534

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Eiffel Fellowship program for supporting LG’s stay in France. We thank Fatma Lecourieux, David Lecourieux, and Pierre Helwi for help in qPCR analysis; We also thank Virginie Lauvergeat for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanwu Dai.

Ethics declarations

Conflicts of interest

No conflicts of interest declared.

Additional information

L. Guan and Z. Dai contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, L., Dai, Z., Wu, BH. et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta 243, 23–41 (2016). https://doi.org/10.1007/s00425-015-2391-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2391-4

Keywords

Navigation