Skip to main content
Log in

Proteome analysis of pear reveals key genes associated with fruit development and quality

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Comparative and association analyses of the proteome and transcriptome for pear fruit development were conducted for the first time in this study.

Pear fruit development involves complex physiological and biochemical processes, but there is still little knowledge available at proteomic and transcriptomic levels, which would be helpful for understanding the molecular mechanisms of fruit development and quality in pear. In our study, three important stages, including early development (S4-22), middle development (S6-27), and near ripening (S8-30), were investigated in ‘Dangshansuli’ by isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology, identifying a total of 1,810 proteins during pear fruit development. The association analysis of proteins and transcript expression revealed 1,724, 1,722, and 1,718 associated proteins identified in stages S4-22, S6-27, and S8-30, respectively. A total of 237, 318, and 425 unique proteins were identified as differentially expressed during S4-22 vs S6-27, S6-27 vs S8-30, S4-22 vs S8-30, respectively, and the corresponding correlation coefficients of the overall differentially expressed proteins and transcripts data were 0.6336, 0.4113, and 0.7049. The phenylpropanoid biosynthesis pathway, which is related to lignin formation of pear fruit, was identified as a significantly enriched pathway during early stages of fruit development. Finally, a total of 35 important differentially expressed proteins related to fruit quality were identified, including three proteins related to sugar formation, seven proteins related to aroma synthesis, and sixteen proteins related to the formation of lignin. In addition, qRT-PCR verification provided further evidence to support differentially expressed gene selection. This study is the first to reveal protein and associated mRNA variations in pear during fruit development and quality conformation, and identify key genes and proteins helpful for future functional genomics studies, and provides gene resources for improvement of pear quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DAFB:

Day after full blooming,

iTRAQ:

Isobaric tags for relative and absolute quantitation

SCX:

Strong cation exchange

HPLC:

High pressure liquid chromatography

AGC:

Automatic gain control

HCD:

High-energy collision dissociation

KEGG:

Kyoto encyclopedia of genes and genomes

GO:

Gene ontology

COG:

Cluster of orthologous groups of proteins

PAL:

Phenylalanineammonia-lyase

F5H:

Ferulate-5-hydroxylase

4CL:

4-coumarate-CoA ligase

CCR:

Cinnamoyl-CoA reductase

CAD:

Cinnamyl-alcoholdehydrogenase

POD:

Peroxidase

HCT:

Hydroxycinnamoyl transferase

MFS:

Major facilitator super family transporter

References

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17(11):2954–2965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61(3):221–294

    Article  CAS  PubMed  Google Scholar 

  • Argenta LC, Fan X, Mattheis JP (2003) Influence of 1-methylcyclopropene on ripening, storage life, and volatile production by d’Anjou cv. pear fruit. J Agric Food Chem 51(13):3858–3864

    Article  CAS  PubMed  Google Scholar 

  • Bain JM (1961) Some morphological, anatomical, and physiological changes in the pear fruit (Pyrus communis var. Williams Bon Chretien) during development and following harvest. Aust J Bot 9(2):99–123

    Article  CAS  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38(4):305–350

    Article  CAS  PubMed  Google Scholar 

  • Bianco L, Lopez L, Scalone AG, Di Carli M, Desiderio A, Benvenuto E, Perrotta G (2009) Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes. J Proteomics 72(4):586–607

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54(1):519–546

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Li G, Nie J, Lin Y, Nie F, Zhang J, Xu Y (2010) Study of the structure and biosynthetic pathway of lignin in stone cells of pear. Sci Hortic 125(3):374–379

    Article  CAS  Google Scholar 

  • Cao H, Guo S, Xu Y, Jiang K, Jones AM, Chong K (2011) Reduced expression of a gene encoding a Golgi localized monosaccharide transporter (OsGMST1) confers hypersensitivity to salt in rice (Oryza sativa). J Exp Bot 62(13):4595–4604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen JL, Wu JH, Wang Q, Deng H, Hu XS (2006) Changes in the volatile compounds and chemical and physical properties of Kuerle fragrant pear (Pyrus serotina Reld) during storage. J Agric Food Chem 54(23):8842–8847

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang Z, Wu J, Wang Q, Hu X (2007) Chemical compositional characterization of eight pear cultivars grown in China. Food Chem 104(1):268–275

    Article  CAS  Google Scholar 

  • Chervin C, Truett JK, Speirs J (1999) Alcohol dehydrogenase expression and alcohol production during pear ripening. J Am Soc Hortic Sci 124(1):71–75

    CAS  Google Scholar 

  • Choi J-H, Choi J-J, Hong K-H, Kim W-S, Lee S-H (2007) Cultivar differences of stone cells in pear flesh and their effects on fruit quality. Hortic Environ Biotechnol 48(1):27–31

    Google Scholar 

  • Christensen JH, Bauw G, Welinder KG, Van Montagu M, Boerjan W (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118(1):125–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conde C, Agasse A, Silva P, Lemoine R, Delrot S, Tavares R, Gerós H (2007) OeMST2 encodes a monosaccharide transporter expressed throughout olive fruit maturation. Plant Cell Physiol 48(9):1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Dussi MC, Sugar D, Wrolstad RE (1995) Characterizing and quantifying anthocyanins in red pears and the effect of light quality on fruit color. J Am Soc Hortic Sci 120(5):785–789

    CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95(25):14863–14868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan G, Xu Y, Zhang X, Lei S, Yang S, Pan S (2011) Characteristics of immobilised β-glucosidase and its effect on bound volatile compounds in orange juice. Int J Food Sci Technol 46(11):2312–2320

    Article  CAS  Google Scholar 

  • Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M (2007) Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol 143(3):1327–1346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng S, Chen X, Zhang Y, Wang Y, Song Y, Chen X-L, Li X, Li M, Liu J, Wang Q (2011) Differential expression of proteins in red pear following fruit bagging treatment. Protein J 30(3):194–200

    Article  CAS  PubMed  Google Scholar 

  • Feng C, Chen M, Xu C-J, Bai L, Yin X-R, Li X, Allan AC, Ferguson IB, Chen K-S (2012) Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genom 13(1):19

    Article  CAS  Google Scholar 

  • Fernie AR, Stitt M (2012) On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant Physiol 158(3):1139–1145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22(4):437–438

    Article  CAS  Google Scholar 

  • Giribaldi M, Perugini I, Sauvage FX, Schubert A (2007) Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF. Proteomics 7(17):3154–3170

    Article  CAS  PubMed  Google Scholar 

  • Hudina M, Śtampar F (2000) Sugars and organic acids contents of European (Pyrus communis L.) and Asian (Pyrus serotina Rehd.) pear cultivars. Acta Alimentaria 29(3):217–230

    Article  CAS  Google Scholar 

  • Itai A, Kawata T, Tanabe K, Tamura F, Uchiyama M, Tomomitsu M, Shiraiwa N (1999) Identification of 1-aminocyclopropane-1-carboxylic acid synthase genes controlling the ethylene level of ripening fruit in Japanese pear (Pyrus pyrifolia Nakai). Mol Gen Genet 261(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lara I, Miró R, Fuentes T, Sayez G, Graell J, López M (2003) Biosynthesis of volatile aroma compounds in pear fruit stored under long-term controlled-atmosphere conditions. Postharvest Biol Technol 29(1):29–39

    Article  CAS  Google Scholar 

  • Lee S-H, Choi J-H, Kim W-S, Han T-H, Park Y-S, Gemma H (2006) Effect of soil water stress on the development of stone cells in pear (Pyrus pyrifolia cv. ‘Niitaka’) flesh. Sci Hortic 110(3):247–253

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lombard PB, Westwood MN (1987) Pear rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley, New York, pp 145–183

    Google Scholar 

  • Lu X-P, Liu Y-Z, An J-C, Hu H-J, Peng S-A (2011) Isolation of a cinnamoyl CoA reductase gene involved in formation of stone cells in pear (Pyrus pyrifolia). Acta Physiologiae Plantarum 33(2):585–591

    Article  CAS  Google Scholar 

  • Lücker J, Laszczak M, Smith D, Lund ST (2009) Generation of a predicted protein database from EST data and application to iTRAQ analyses in grape (Vitis vinifera cv. Cabernet Sauvignon) berries at ripening initiation. BMC Genom 10(1):50

    Article  Google Scholar 

  • Maier T, Schmidt A, Güell M, Kühner S, Gavin AC, Aebersold R, Serrano L (2011) Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol 7(1):511

    Article  PubMed Central  PubMed  Google Scholar 

  • Marsh E, Alvarez S, Hicks LM, Barbazuk WB, Qiu W, Kovacs L, Schachtman D (2010) Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.). Proteomics 10(10):2057–2064

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Esteso MJ, Vilella-Antón MT, Pedreño MÁ, Valero ML, Bru-Martínez R (2013) iTRAQ-based protein profiling provides insights into the central metabolism changes driving grape berry development and ripening. BMC Plant Biol 13(1):167

    Article  PubMed Central  PubMed  Google Scholar 

  • Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452(7190):991–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morales AL, Duque C (2002) Free and glycosidically bound volatiles in the mammee apple (Mammea americana) fruit. Eur Food Res Technol 215(3):221–226

    Article  CAS  Google Scholar 

  • Mounet F, Moing A, Garcia V, Petit J, Maucourt M, Deborde C, Bernillon S, Le Gall G, Colquhoun I, Defernez M (2009) Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol 149(3):1505–1528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nogueira SB, Labate CA, Gozzo FC, Pilau EJ, Lajolo FM, Oliveira do Nascimento JR (2012) Proteomic analysis of papaya fruit ripening using 2DE-DIGE. Journal of proteomics 75(4):1428–1439

    Article  CAS  PubMed  Google Scholar 

  • Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JK, Fei Z (2011) Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol 157(1):405–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2011) Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J Proteomics 74(8):1230–1243

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Zeng Y, An J, Ye J, Xu Q, Deng X (2012) An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. J Proteomics 75(9):2670–2684

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Zhu B, Zhu H, Chen Y, Tian H, Luo Y, Fu D (2014) iTRAQ protein profile analysis of tomato green-ripe mutant reveals new aspects critical for fruit ripening. J Proteome Res 13(4):1979–1993

    Article  CAS  PubMed  Google Scholar 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62(1):1–34

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pedreschi R, Hertog M, Robben J, Noben J-P, Nicolaï B (2008) Physiological implications of controlled atmosphere storage of ‘Conference’pears (Pyrus communis L.): a proteomic approach. Postharvest Biol Technol 50(2):110–116

    Article  CAS  Google Scholar 

  • Pesis E (2005) The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol Technol 37(1):1–19

    Article  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Sauer N, Tanner W (1989) The hexose carrier from Chlorella: cDNA cloning of a eucaryotic H+-cotransporter. FEBS Lett 259(1):43–46

    Article  CAS  PubMed  Google Scholar 

  • Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54(4):712–732

    Article  CAS  PubMed  Google Scholar 

  • Seymour GB, Taylor JE, Tucker GA (1993) Biochemistry of fruit ripening. Chapman & Hall, London

    Book  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43(2):109–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soglio V, Costa F, Molthoff J, Weemen-Hendriks W, Schouten H, Gianfranceschi L (2009) Transcription analysis of apple fruit development using cDNA microarrays. Tree Gene Geno 5(4):685–698

    Article  Google Scholar 

  • Suwanagul A, Richardson DG (1997) Identification of headspace volatile compounds from different pear (Pyrus communis L.) varieties. In: VII International Symposium on Pear Growing 475 605–624

  • Tao S, Khanizadeh S, Zhang H, Zhang S (2009) Anatomy, ultrastructure and lignin distribution of stone cells in two Pyrus species. Plant Sci 176(3):413–419

    Article  CAS  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29(1):22–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus domestica Borkh.). Nat Genet 42(10):833–839

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494

    Article  CAS  PubMed  Google Scholar 

  • Washburn MP, Koller A, Oshiro G, Ulaszek RR, Plouffe D, Deciu C, Winzeler E, Yates JR (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc Natl Acad Sci 100(6):3107–3112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Biol 49(1):585–609

    Article  CAS  Google Scholar 

  • Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13(1):19–50

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu H-X, Jia H-M, Ma X-w, Wang S-B, Yao Q-S, Xu W-t, Zhou Y-G, Gao Z-S, Zhan R-L (2014a) Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits. J Proteomics 105:19–30

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Xu Z, Zhang Y, Chai L, Yi H, Deng X (2014b) An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J Exp Bot 65(6):1651–1671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie M, Huang Y, Zhang Y, Wang X, Yang H, Yu O, Dai W, Fang C (2013) Transcriptome profiling of fruit development and maturation in Chinese white pear (Pyrus bretschneideri Rehd). BMC Genom 14(1):823

    Article  CAS  Google Scholar 

  • Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Kojima T, Bantog N, Shimoda T, Mori H, Shiratake K, Yamaki S (2007) Cloning of two isoforms of soluble acid invertase of Japanese pear and their expression during fruit development. J Plant Physiol 164(6):746–755

    Article  CAS  PubMed  Google Scholar 

  • Yang Y-N, Zhao G, Yue W-Q, Zhang S-L, Gu C, Wu J (2013) Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear (Pyrus communis L.). Tree Genet Genomes 9(5):1351–1360

    Article  Google Scholar 

  • Yu K, Xu Q, Da X, Guo F, Ding Y, Deng X (2012) Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genom 13(1):10

    Article  CAS  Google Scholar 

  • Zhou YS, Lamrani M, Chan-Park MB, Leong SSJ, Wook MC, Chen WN (2010) iTRAQ-coupled two-dimensional liquid chromatography/tandem mass spectrometric analysis of protein profile in Escherichia coli incubated with human neutrophil peptide 1-potential in antimicrobial strategy. Rapid Commun Mass Spectrom 24(18):2787–2790

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Simons B, Zhu N, Oppenheimer DG, Chen S (2010) Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. J Proteomics 73(4):790–805

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Science Foundation of China (31171928), Ministry of Education Program for New Century Excellent Talents in University (NCET-13-0864), and the Earmarked Fund for China Agriculture Research System (CARS-29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J.M., Huang, X.S., Li, L.T. et al. Proteome analysis of pear reveals key genes associated with fruit development and quality. Planta 241, 1363–1379 (2015). https://doi.org/10.1007/s00425-015-2263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2263-y

Keywords

Navigation