Skip to main content
Log in

Genomic origin, expression differentiation and regulation of multiple genes encoding CYP83A1, a key enzyme for core glucosinolate biosynthesis, from the allotetraploid Brassica juncea

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 27 November 2014

Abstract

Main conclusion

The multiple BjuCYP83A1 genes formed as a result of polyploidy have retained cell-, tissue-, and condition-specific transcriptional sub-functionalization to control the complex aliphatic glucosinolates biosynthesis in the allotetraploid Brassica juncea.

Glucosinolates along with their breakdown products are associated with diverse roles in plant metabolism, plant defense and animal nutrition. CYP83A1 is a key enzyme that oxidizes aliphatic aldoximes to aci-nitro compounds in the complex aliphatic glucosinolate biosynthetic pathway. In this study, we reported the isolation of four CYP83A1 genes named BjuCYP83A1-1, -2, -3, and -4 from allotetraploid Brassica juncea (AABB genome), an economically important oilseed crop of Brassica genus. The deduced BjuCYP83A1 proteins shared 85.7–88.4 % of sequence identity with A. thaliana AtCYP83A1 and 84.2–95.8 % among themselves. Phylogenetic and divergence analysis revealed that the four BjuCYP83A1 proteins are evolutionary conserved and have evolved via duplication and hybridization of two relatively simpler diploid Brassica genomes namely B. rapa (AA genome) and B. nigra (BB genome), and have retained high level of sequence conservation following allopolyploidization. Ectopic over-expression of BjuCYP83A1-1 in A. thaliana showed that it is involved mainly in the synthesis of C4 aliphatic glucosinolates. Detailed expression analysis using real-time qRT-PCR in B. juncea and PromoterBjuCYP83A1–GUS lines in A. thaliana confirmed that the four BjuCYP83A1 genes have retained ubiquitous, overlapping but distinct expression profiles in different tissue and cell types of B. juncea, and in response to various elicitor treatments and environmental conditions. Taken together, this study demonstrated that transcriptional sub-functionalization and coordinated roles of multiple BjuCYP83A1 genes control the biosynthesis of aliphatic glucosinolates in the allotetraploid B. juncea, and provide a framework for metabolic engineering of aliphatic glucosinolates in economically important Brassica species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CYP:

Cytochrome P450

DW:

Dry weight

GSL:

Glucosinolate (s)

GUS:

β-Glucuronidase

mya:

Million years ago

References

  • Adams KL (2007) Evolution of duplicate gene expression in polyploid and hybrid plants. J Heredity 98:136–141

    Article  CAS  Google Scholar 

  • Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45

    Article  CAS  PubMed  Google Scholar 

  • Akhunova AR, Matniyazov RT, Liang H, Akhunov ED (2010) Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genom 11:505

    Article  Google Scholar 

  • Alvarez S, He Y, Chen S (2008) Comparative investigations of the glucosinolate–myrosinase system in Arabidopsis suspension cells and hypocotyls. Plant Cell Physiol 49:324–333

    Article  CAS  PubMed  Google Scholar 

  • Augustine R, Mukhopadhyay A, Bisht NC (2013) Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Plant Biotech J 11:855–866

    Article  CAS  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two P450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bellostas N, Sørensen JC, Sørensen H (2007) Profiling glucosinolates in vegetative and reproductive tissues of four Brassica species of the U-triangle for their biofumigation potential. J Sci Food Agric 87:1586–1594

    Article  CAS  Google Scholar 

  • Bisht NC, Gupta V, Ramchiary N, Sodhi YS, Mukhopadhyay A et al (2009) Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species. Theor Appl Genet 118:413–421

    Article  CAS  PubMed  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–481

    Article  CAS  PubMed  Google Scholar 

  • Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229

    Article  CAS  Google Scholar 

  • Chandna R, Augustine R, Bisht NC (2012) Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PLoS ONE 7:e36918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49:311–343

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary B, Flagel L, Stupar RM, Udall JA, Verma N et al (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182:503–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gigolashvili T, Berger B, Flügge UI (2009) Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana. Phytochem Rev 8:3–13

    Article  CAS  Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Higgins J, Magusin A, Trick M, Fraser F, Bancroft I (2012) Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genom 13:247

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed Central  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusion: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mawson R, Heaney RK, Zdunczyk Z, Kozlowska H (1993) Rapeseed meal-glucosinolates and their antinutritional effects. Part II. Flavour and palatability. Mol Nutr Food Res 37:336–344

    CAS  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miao H, Wei J, Zhao Y, Yan H, Sun B et al (2013) Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. J Exp Bot 64:1097–1109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E et al (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315

    Article  CAS  PubMed  Google Scholar 

  • Mun J-H, Kwon S-J, Yang T-J, Seol Y-J, Jin M et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    Article  PubMed Central  PubMed  Google Scholar 

  • Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J et al (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327–342

    Article  CAS  PubMed  Google Scholar 

  • Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H et al (2003) CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S et al (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genom 9:113

    Article  Google Scholar 

  • Purakayastha TJ, Viswanath T, Bhadraray S, Chhonkar PK, Adhikari PP et al (2008) Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Int J Phytoremed 10:61–72

    Article  CAS  Google Scholar 

  • Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N et al (2007) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross (RSB) scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85

    Article  CAS  PubMed  Google Scholar 

  • Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M et al (2001) bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13:351–367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sawada Y, Toyooka K, Kuwahara A, Sakata A, Nagano M et al (2009) Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant Cell Physiol 50:1579–1586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sharma S, Padmaja KL, Gupta V, Paritosh K, Pradhan AK, Pental D (2014) Two plastid DNA lineages—Rapa/Oleracea and Nigra—within the tribe Brassiceae can be best explained by reciprocal crosses at hexaploidy: evidence from divergence times of the plastid genomes and R-block genes of the A and B genomes of Brassica juncea. PLoS ONE 9:e93260

    Article  PubMed Central  PubMed  Google Scholar 

  • Sodhi YS, Mukhopadhyay A, Arumugam N, Verma JK, Gupta V et al (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and a low glucosinolate line of Brassica juncea. Plant Breed 121:508–511

    Article  CAS  Google Scholar 

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Textor S, Gershenzon J (2009) Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem Rev 8:149–170

    Article  CAS  Google Scholar 

  • Traka M, Mithen R (2009) Glucosinolate, isothiocyanates and human health. Phytochem Rev 8:269–282

    Article  CAS  Google Scholar 

  • UN (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452

    Google Scholar 

  • Wang H, Wu J, Sun S, Liu B, Cheng F et al (2011) Glucosinolate biosynthetic genes in Brassica rapa. Gene 487:135–142

    Article  CAS  PubMed  Google Scholar 

  • Witzel K, Hanschen FS, Schreiner M, Krumbein A, Ruppel S et al (2013) Verticillium suppression is associated with the glucosinolate composition of Arabidopsis thaliana leaves. PLoS ONE 8(9):e71877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zang YX, Kim HU, Kim JA, Lim MH, Jin M et al (2009) Genome-wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J 276:3559–3574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The central instrumentation, microscopy facility, and plant growth facility at NIPGR are highly acknowledged. We thank Mr. Pawan Kumar for performing the divergence time analysis. Technical assistance of Mr. Vinod Kumar is duly acknowledged. The authors declare no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen C. Bisht.

Additional information

Meenu and R. Augustine contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meenu, Augustine, R., Majee, M. et al. Genomic origin, expression differentiation and regulation of multiple genes encoding CYP83A1, a key enzyme for core glucosinolate biosynthesis, from the allotetraploid Brassica juncea . Planta 241, 651–665 (2015). https://doi.org/10.1007/s00425-014-2205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2205-0

Keywords

Navigation