Skip to main content
Log in

Differential transcriptional regulation of l-ascorbic acid content in peel and pulp of citrus fruits during development and maturation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Citrus fruits are an important source of ascorbic acid (AsA) for human nutrition, but the main pathways involved in its biosynthesis and their regulation are still not fully characterized. To study the transcriptional regulation of AsA accumulation, expression levels of 13 genes involved in AsA biosynthesis, 5 in recycling and 5 in degradation were analyzed in peel and pulp of fruit of two varieties with different AsA concentration: Navel orange (Citrus sinensis) and Satsuma mandarin (Citrus unshiu). AsA accumulation in peel and pulp correlated with the transcriptional profiling of the l-galactose pathway genes, and the myo-inositol pathway appeared to be also relevant in the peel of immature-green orange. Differences in AsA content between varieties were associated with differential gene expression of GDP-mannose pyrophosphorylase (GMP), GDP-l-galactose phosphorylase (GGP) and l-galactose-1-phosphate phosphatase (GPP), myo-inositol oxygenase in peel, and GGP and GPP in pulp. Relative expressions of monodehydroascorbate reductase 3 (MDHAR3) and dehydroascorbate reductase1 (DHAR1) correlated with AsA accumulation during development and ripening in peel and pulp, respectively, and were more highly expressed in the variety with higher AsA contents. Collectively, results indicated a differential regulation of AsA concentration in peel and pulp of citrus fruits that may change during the different stages of fruit development. The l-galactose pathway appears to be predominant in both tissues, but AsA concentration is regulated by complex mechanisms in which degradation and recycling also play important roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AsA:

Ascorbic acid

AO:

Ascorbate oxidase

APX:

Ascorbate peroxidase

CP:

Crossing point

DHAR:

Dehydroascorbate reductase

GalLDH:

l-Galactono-1,4-lactone dehydrogenase

GalDH:

l-Galactose dehydrogenase

GalUR:

d-Galacturonic acid reductase

GGP:

GDP-l-Galactose phosphorylase

GLOase:

l-Gulono-1,4-lactone oxidase

GME:

GDP-Mannose-3′,5′-epimerase

GMP:

GDP-Mannose pyrophosphorylase

GPP:

l-Galactose-1-phosphate phosphatase

MDHAR:

Monodehydroascorbate reductase

MIOX:

Myo-inositol oxygenase

References

  • Abeysinghe DC, Li X, Sun CD, Zhang WS, Zhou CH, Chen KS (2007) Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chem 104:1338–1344

    Article  CAS  Google Scholar 

  • Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nature Biotechnol 21:177–181

    Article  CAS  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1, 4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alós E, Rodrigo MJ, Zacarías L (2013) Transcriptomic analysis of genes involved in the biosynthesis, recycling and degradation of l-ascorbic acid in pepper fruits (Capsicum annuum L). Plant Sci 207:2–11

    Article  PubMed  CAS  Google Scholar 

  • Atkins CD, Wiederhold E, Moore EL (1945) Vitamin C content of processing residue from Florida citrus waste. Fruit Prod J 24:260–262

    CAS  Google Scholar 

  • Badejo AA, Fujikawa Y, Esaka M (2009) Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff–Wheeler pathway in acerola (Malpighia glabra). J Plant Physiol 166:652–660

    Article  PubMed  CAS  Google Scholar 

  • Badejo AA, Wada K, Gao Y, Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2012) Translocation and the alternative d-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the d-mannose/l-galactose pathway. J Exp Bot 63:229–329

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bermejo A, Llosa MJ, Cano A (2011) Analysis of bioactive compounds in seven citrus cultivars. Food Sci Technol Int 17:55–62

    Article  PubMed  CAS  Google Scholar 

  • Block G (1991) Dietary guidelines and the results of food consumption surveys. Am J Clin Nutr 53:3565–3575

    Google Scholar 

  • Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-l-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA (2012) Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotechnol J 10:390–397

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang S, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cruz-Rus E, Botella MA, Valpuesta V, Gomez-Jimenez MC (2010) Analysis of genes involved in l-ascorbic acid biosynthesis during growth and ripening of grape berries. J Plant Physiol 167:739–748

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Rus E, Amaya I, Sánchez-Sevilla JF, Botella MA, Valpuesta V (2011) Regulation of l-ascorbic acid content in strawberry fruits. J Exp Bot 62:4191–4201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cruz-Rus E, Amaya I, Valpuesta V (2012) The challenge of increasing vitamin C content in plant foods. Biotechnol J 7:1110–1121

    Article  PubMed  CAS  Google Scholar 

  • Davey MW, Dekempeener E, Keulemans J (2003) Rocket-powered high-performance liquid chromatographic analysis of plant ascorbate and glutathione. Anal Biochem 316:74–81

    Article  PubMed  CAS  Google Scholar 

  • Davey MW, Franck C, Keulemans J (2004) Distribution, developmental and stress responses of antioxidant metabolism in malus. Plant Cell Environ 27:1309–1320

    Article  CAS  Google Scholar 

  • Dhuique-Mayer C, Caris-Veyrat C, Ollitrault P, Curk F, Amiot MJ (2005) Varietal and interspecific influence on micronutrient contents in citrus from the Mediterranean area. J Agric Food Chem 52:2140–2145

    Article  CAS  Google Scholar 

  • Endres S, Tenhaken R (2009) Myoinositol oxigenase controls the level of myoinositol in Arabidopsis, but not increase ascorbic acid. Plant Physiol 149:1042–1049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fukunaga K, Fujikawa Y, Esaka M (2010) Light regulation of ascorbic acid biosynthesis in rice via light responsive cis-elements in genes encoding ascorbic acid biosynthetic enzymes. Biosci Biotechnol Biochem 74:888–891

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR (2013) The role of l-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64:433–443

    Article  PubMed  CAS  Google Scholar 

  • Haroldsen VM, Chi-Ham CL, Kulkarni S, Lorence A, Bennett AB (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol Biochem 49:1244–1249

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Oba K, Hirai M (1998) l-Galactono-γ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol 39:1350–1358

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T (2009) l-ascorbate biosynthesis in peach: cloning of six l-galactose pathway-related genes and their expression during peach fruit development. Physiol Plant 136:139–149

    Article  PubMed  CAS  Google Scholar 

  • Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li MJ, Ma FW, Zhang M, Pu F (2008) Distribution and metabolism of ascorbic acid in apple fruits (Malus domestica Borkh cv. Gala). Plant Sci 174:606–612

    Article  CAS  Google Scholar 

  • Li M, Ma F, Shang P, Zhang M, Hou C, Liang D (2009) Influence of light on ascorbate formation and metabolism in apple fruits. Planta 230:39–51

    Article  PubMed  CAS  Google Scholar 

  • Lima-Silva V, Rosado A, Amorim-Silva V et al (2012) Genetic and genome-wide transcriptomic analyses identify co-regulation of oxidative response and hormone transcript abundance with vitamin C content in tomato fruit. BMC Genomics 13:187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Linster CL, Van Schaftingen E (2007) Vitamin C: biosynthesis, recycling and degradation in mammals. FEBS J 274:1–22

    Article  PubMed  CAS  Google Scholar 

  • Loewus FA, Jang R, Seegmiller CG (1958) The conversion of C14-labeled sugars to l-ascorbic acid in ripening strawberries. IV. A comparative study of d-galacturonic acid and l-ascorbic acid formation. J Biol Chem 232:533–541

    PubMed  CAS  Google Scholar 

  • Lorence A, Nessler CL (2007) Pathway engineering of the plant vitamin C metabolic network. In: Verpoorte R, Alfermann AW, Johnson TS (eds) Applications of plant metabolic engineering. Springer, Dordrecht, pp 189–209

    Google Scholar 

  • Martí N, Mena P, Cánovas JA, Micol V, Saura D (2009) Vitamin C and the role of citrus juices as functional food. Nat Prod Commun 4:677–700

    PubMed  Google Scholar 

  • Melino VJ, Soole KL, Ford CM (2009) Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol 9:145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mellidou I, Chagné D, Laing WA, Keulemans J, Davey MW (2012a) Allelic variation in paralogs of GDP-l-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiol 160:1613–1629

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mellidou I, Keulemans J, Kanellis AK, Davey MW (2012b) Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol 17:239

    Article  CAS  Google Scholar 

  • Nagy S (1980) Vitamin C contents of citrus fruit and their products: a review. J Agric Food Chem 28:8–18

    Article  PubMed  CAS  Google Scholar 

  • Oba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of l-galactono-1,4-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117:120–124

    PubMed  CAS  Google Scholar 

  • Ostergaard J, Persiau G, Davey MW, Van Montagu M (1997) Isolation of a cDNA coding for l-galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. J Biol Chem 272:30009–30016

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acid Res 30:e36

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper-excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  PubMed  CAS  Google Scholar 

  • Qin A, Shi Q, Yu X (2011) Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38:1557–1566

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo MJ, Marcos JF, Zacarías L (2004) Biochemical and molecular analysis of carotenoid biosynthesis in flavedo of orange (Citrus sinensis L.) during fruit development and maturation. J Agric Food Chem 52:6724–6731

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo MJ, Alquezar B, Alós E, Medina V, Carmona L, Bruno M, Al-Babili S, Zacarías L (2013) A novel carotenoid cleavage activity involved in the biosynthesis of citrus fruit-specific apocarotenoid pigments. J Exp Bot. doi:10.1093/jxb/ert260

    PubMed Central  PubMed  Google Scholar 

  • Romero P, Lafuente MT, Rodrigo MJ (2012) The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J Exp Bot 63:4931–4945

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sanmartin M, Pateraki I, Chatzopoulou F, Kanellis AK (2007) Differential expression of the ascorbate oxidase multigene family during fruit development and in response to stress. Planta 225:873–885

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (2011) Vitamin C: the metabolism and functions of ascorbic acid in plants. Adv Bot Res 59:109–177

    Google Scholar 

  • Stewart I, Wheaton TA (1971) Continuous flow separation of carotenoids by liquid chromatography. J Chromatogr 55:325–336

    Article  PubMed  CAS  Google Scholar 

  • Tadeo FR, Cercós M, Colmenero-Flores JM et al (2008) Molecular physiology of development and quality of citrus. Adv Bot Res 47:147–223

    Article  CAS  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  PubMed  CAS  Google Scholar 

  • Wolucka BA, Van Montagu M (2003) GDP-mannose 3′, 5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  PubMed  CAS  Google Scholar 

  • Wolucka BA, Van Montagu M (2007) The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry 68:2602–2613

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Chen LL, Ruan X et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Yoshimura K, Takeda T, Shigeoka S (2000) Molecular characterization of tobacco mitochondrial l-galactono-γ-lactone dehydrogenase and its expression in Escherichia coli. Plant Cell Physiol 41:666–675

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Xie J, Wang F, Zhong J, Liu Y, Li G, Peng S (2011) Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp. J Plant Physiol 168:2196–2205

    Article  PubMed  CAS  Google Scholar 

  • Yang X-Y, Wang F–F, Teixeira da Silva JA, Zhong J, Liu Y-Z, Peng S-A (2013) Branch girdling at fruit green mature stage affects fruit ascorbic acid contents and expression of genes involved in L-galactose pathway in citrus. N Z J Crop Hort Sci. doi:10.1080/01140671.2012.724429

    Google Scholar 

  • Zhang Y, Li H, Shu W, Zhang C, Zhang W, Ye Z (2011) Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Mol Biol Rep 29:638–645

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants FP7-PEOPLE-2011-CIG-2011-303652 (Marie Curie Actions, European Union), Proyectos de I + D para Grupos de Investigación Emergentes GV/2012/036 (Generalitat Valenciana, Spain). Enriqueta Alós was recipient of a JAE-Doc (CSIC) post-doctoral contract which is co-funded by Fondo Social Europeo de Desarrollo Regional (FEDER). Financial support by PROMETEO2010/010 (Generalitat Valenciana, Spain), Fun-C-Food (CSD2007-0063C, Ministerio de Ciencia e Innovación, Spain) and AGL-2009-11558 and AGL-2012-34573 (Ministerio Economía y Competitividad, Spain) are also acknowledged. We thank Dr. Luis Navarro (IVIA, Moncada, Valencia) for the use of the Citrus Germplasm Bank and Dr. Jose Vicente Gil (Universitat de Valencia; IATA-CSIC) for allowing the use of the HPLC equipment. We also gratefully acknowledge the assistance of Arancha Gurrea, Joanna Lado and Amparo Beneyto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Zacarías.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 247 kb)

425_2014_2044_MOESM2_ESM.pptx

Supplementary Figure S1 Changes in fruit diameter, external color (a/b ratio) and maturity index of the juice (Total soluble solids/total acidity) in fruits of Satsuma Owari (white circles) and Washington Navel (black circles) during fruit development and ripening. Data of fruit diameter and external color are mean ± SD of 20 replicates, and those of juice maturity index are mean ± SD of 3 replicates. JN, JL, A, S, O, N, D indicate June, July, August, September, October, November and December, respectively. (PPTX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alós, E., Rodrigo, M.J. & Zacarías, L. Differential transcriptional regulation of l-ascorbic acid content in peel and pulp of citrus fruits during development and maturation. Planta 239, 1113–1128 (2014). https://doi.org/10.1007/s00425-014-2044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2044-z

Keywords

Navigation