Skip to main content
Log in

Influence of light on ascorbate formation and metabolism in apple fruits

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

To further understand the regulatory mechanism of light on the formation of ascorbic acid (AsA) in the sink organs of plants, a systematical investigation on AsA levels, activities of two key biosynthsis enzymes and their mRNA expression as well as the recycling was performed in the fruits of apple (Malus domestica Borkh), under different levels of shade. After the whole trees were shaded with the sun-light about 50–55% for 20 days, AsA levels were significantly decreased in fruit peel, flesh and leaves, while mRNA expression levels and activities of l-galactose dehydrogenase (l-GalDH, EC 1.1.1.117) and l-galactono-1,4-lactone dehydrogenase (l-GalLDH, EC 1.3.2.3) as well as activities of recycling enzymes was clearly declined in the leaf and peel but not in the flesh. By shading fruits only for 20 days, AsA levels, relative mRNA levels and activities of l-GalDH and l-GalLDH as well as activities of recycling enzymes all showed obvious decrease in the peel, but not in the flesh. However, their levels in the peel were markedly increased after the full shade was removed and re-exposed these fruits on natural light for 5 days. It is concluded that light affects AsA biosynthesis and recycling in the peel and leaf, but did not in the fresh. Results also suggest that apple fruit is potential to biosynthesize AsA via the l-galactose pathway, and AsA content in the fruits may depend partly on levels of AsA or other photochemistry controlled by light in the leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

AsA:

Reduced ascorbic acid

DHA:

Dehydroascorbate

DHAR:

Dehydroascorbate reductase

l-GalDH:

l-Galactose dehydrogenase

l-GalLDH:

l-Galactono-1,4-lactone dehydrogenase

l-GalL:

l-Galactono-1,4-lactone

l-Gal:

l-Galactose

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Oxidized glutathione

MDHAR:

Monodehydroascorbate reductase

PVP-4000:

Polyvinyl pyrrolidone-4000

RT-PCR:

Reverse transcription-Polymerase chain reaction

T-AsA:

Total ascorbic acid (AsA + DHA)

T-GSH:

Total glutathione (GSH + GSSG)

References

  • Agius F, Lamothe RG, Caballero JL, Blanco JM, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  PubMed  CAS  Google Scholar 

  • Bartoli CG, Yu JP, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee LB, Chatterjee GC, Ghosh NC, Ghosh JJ, Guha BC (1960) Biological synthesis of l-ascorbic acid in animal tissues: conversion of l-gulonolactone into l-ascorbic acid. Biochem J 74:193–203

    PubMed  CAS  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than does increasing avoidance. Plant Physiol 138:1673–1689

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Li P, Cheng L (2008) Effects of high temperature coupled with high light on the balance between photooxidation and photoprotection in the sun-exposed peel of apple. Planta 228:745–756

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96:4198–4203

    Article  PubMed  CAS  Google Scholar 

  • Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes l-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    Article  PubMed  CAS  Google Scholar 

  • Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie I, Strain J, Favell D, Fletcher J (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  • Davey MW, Franck C, Keulemans J (2004) Distribution, developmental and stress responses of antioxidant metabolism in Malus. Plant Cell Environ 27:1309–1320

    Article  CAS  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  PubMed  CAS  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert K-J, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Franceschi VR, Tarlyn NL (2002) l-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol 130:649–656

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437a–437g

    Article  Google Scholar 

  • Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis. Plant J 30:541–553

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Hancock RD, Viola R (2005) Biosynthesis and catabolism of l-ascorbic acid in plants. Crit Rev Plant Sci 24:167–188

    Article  CAS  Google Scholar 

  • Hancock RD, Walker PG, Pont SDA, Marquis N, Vivera S, Gordon SL, Brennan RM, Viola R (2007) l-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the l-galactose pathway. Funct Plant Biol 34:1080–1091

    Article  CAS  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355

    Article  CAS  Google Scholar 

  • Laing WA, Frearson N, Bulley S, MacRae E (2004) Kiwifruit l-galactose dehydrogenase: molecular, biochemical and physiological aspects of the enzyme. Funct Plant Biol 31:1015–1025

    Article  CAS  Google Scholar 

  • Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104:9534–9539

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  PubMed  CAS  Google Scholar 

  • Lata B, Przeradzka M, Binkowska M (2005) Great differences in antioxidant properties exist between 56 apple cultivars and vegetation seasons. J Agric Food Chem 53:8970–8978

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Schellhorn HE (2007) New developments and novel therapeutic perspectives for vitamin C. J Nutr 137:2171–2184

    PubMed  CAS  Google Scholar 

  • Li MJ, Ma FW, Zhang M, Pu F (2008) Distribution and metabolism of ascorbic acid in apple fruits (Malus domestica Borkh cv. Gala.). Plant Sci 174:606–612

    Article  CAS  Google Scholar 

  • Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG (2007) Arabidopsis VTC2 encodes a GDP-l-galactose phosphorylase, the last unknown enzyme in the Smirnoff–Wheeler pathway to ascorbic acid in plants. J Biol Chem 26:18879–18885

    Article  Google Scholar 

  • Logan BA, Barker DH, Demmig-Adams B, Adams WW (1996) Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant Cell Environ 19:1083–1090

    Article  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  PubMed  CAS  Google Scholar 

  • Loscos M, Matamoros A, Becana M (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146:1282–1292

    Article  PubMed  CAS  Google Scholar 

  • Ma FW, Cheng LL (2004) Exposure of the shaded side of apple fruit to full sun leads to upregulation of both xanthophyll cycle and the ascorbate-glutathione cycle. Plant Sci 166:1479–1486

    Article  CAS  Google Scholar 

  • Matamoros MA, Loscos J, Coronado MJ, Ramos J, Sato S, Testillano PS, Tabata S, Becana M (2006) Biosynthesis of ascorbic acid in legume root nodules. Plant Physiol 141:1068–1077

    Article  PubMed  CAS  Google Scholar 

  • Mieda T, Yabuta Y, Rapolu M, Motoki T, Takeda T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Feedback inhibition of spinach l-galactose dehydrogenase by l-ascorbate. Plant Cell Physiol 45:1271–1279

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  PubMed  CAS  Google Scholar 

  • Ôba K, Fukui M, Imai Y, Iriyama S, Nogami K (1994) l-Galactono-γ-lactone dehydrogenase: partial characterization, induction of activity and role in the synthesis of ascorbic acid in wounded white potato tuber tissue. Plant Cell Physiol 35:473–478

    Google Scholar 

  • Ôba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of l-galactono-γ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117:120–124

    PubMed  Google Scholar 

  • Pateraki I, Sanmartin M, Kalamaki MS, Gerasopoulos B, Kanellis AK (2005) Molecular characterization and expression studies during melon fruit development and ripening of l-galactono-1,4-lactone dehydrogenase. J Exp Bot 55:1623–1633

    Article  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303

    Article  PubMed  CAS  Google Scholar 

  • Razavi F, Keulemans J, Davey MW (2005) A study of the l-ascorbate biosynthetic capacity of apple fruit. Commun Appl Biol Sci 70:213–216

    CAS  Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    PubMed  CAS  Google Scholar 

  • Tabata K, Ôba K, Suzuki K, Esaka M (2001) Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for l-galactono-1,4-lactone dehydrogenase. Plant J 27:139–148

    Article  PubMed  CAS  Google Scholar 

  • Tabata K, Takaoka T, Esaka M (2002) Gene expression of ascorbic acid-related enzymes in tobacco. Phytochemistry 61:631–635

    Article  PubMed  CAS  Google Scholar 

  • Tamaoki M, Mukai F, Asai N, Nakajima N, Kubo A, Aono M, Saji H (2003) Light-controlled expression of a gene encoding l-galactono-γ-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Sci 164:1111–1117

    Article  CAS  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Tedone L, Hancock RD, Alberino S, Haupt S, Viola R (2004) Long-distance transport of l-ascorbic acid in potato. BMC Plant Biol 4:16

    Article  PubMed  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amakoc Ka, Yamawakib K, Muratad N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  PubMed  CAS  Google Scholar 

  • Wolucka BA, Van Montagu M (2003) GDP-mannose-3′, 5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Fund of Shaanxi province (2006C101) and Talent Support Program of Northwest A&F University. The authors are grateful to Dr Yihu Dong (Institute of Molecular and Cell Biology, Republic of Singapore) for his helps in writing and Mr Xuanchang Fu (College of Horticulture, Northwest A&F University) for field management on the apple trees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengwang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Ma, F., Shang, P. et al. Influence of light on ascorbate formation and metabolism in apple fruits. Planta 230, 39–51 (2009). https://doi.org/10.1007/s00425-009-0925-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0925-3

Keywords

Navigation