Skip to main content
Log in

A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The study was aimed to identify the factors that regulate the intensity of flower color in cyanic dahlia (Dahlia variabilis), using fifteen cultivars with different color intensities in their petals. The cultivars were classified into three groups based on their flavonoid composition: ivory white cultivars with flavones; purple and pink cultivars with flavones and anthocyanins; and red cultivars with flavones, anthocyanins, and chalcones. Among the purple, pink, and ivory white cultivars, an inverse relationship was detected between lightness, which was used as an indicator for color intensity and anthocyanin content. A positive correlation was detected between anthocyanin contents and the expression of some structural genes in the anthocyanin synthesis pathway that are regulated by DvIVS, a basic helix-loop-helix transcription factor. A positive correlation between anthocyanin content and expression of DvIVS was also found. The promoter region of DvIVS was classified into three types, with cultivars carrying Type 1 promoter exhibited deep coloring, those carrying Type 2 and/or Type 3 exhibited pale coloring, and those carrying Type 1 and Type 2 and/or Type 3 exhibited medium coloring. The transcripts of the genes from these promoters encoded full-length predicted proteins. These results suggested that the genotype of the promoter region in DvIVS is one of the key factors determining the flower color intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANS:

Anthocyanidin synthase

bHLH:

Basic helix-loop-helix

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

F3H:

Flavanone 3-hydroxylase

FNS:

Flavone synthase

HPLC:

High-performance liquid chromatography

WDR:

WD-repeat

References

  • Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y, Yakushiji H, Koshita Y, Kobayashi S (2011) Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis × labruscana grapes. Theor Appl Genet 122:1427–1438

    Article  PubMed  Google Scholar 

  • Bai Y, Pattanaik S, Patra B, Werkman JR, Xie CH, Yuan L (2011) Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. Planta 234:363–375

    Article  PubMed  CAS  Google Scholar 

  • Bate-Smith EC, Swain T (1953) The isolation of 2′,4,4′-trihydroxychalkone from yellow varieties of Dahlia variabilis. J Chem Soc, 2185–2187

  • Bate-Smith EC, Swain T, Nördstrom CG (1955) Chemistry and inheritance of flower colour in the Dahlia. Nature 176:1016–1018

    Article  CAS  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Gen 6:836–846

    Article  CAS  Google Scholar 

  • Deguchi A, Ohno S, Hosokawa M, Tatsuzawa F, Doi M (2013) Endogenous post-transcriptional gene silencing of flavone synthase resulting in high accumulation of anthocyanins in black dahlia cultivars. Planta 237:1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul J-, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55:940–953

    Article  PubMed  CAS  Google Scholar 

  • Fujioka M, Kato M, Kakihara F, Tokumasu S (1991) Anthocyanidin composition of petals in Pelargonium × domesticum Baiey. J Jpn Soc Hortic Sci 59:823–831

    CAS  Google Scholar 

  • Gatt M, Ding H, Hammett K, Murray B (1998) Polyploidy and evolution in wild and cultivated Dahlia species. Ann Bot 81:647–656

    Article  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB, Greenham J, Eagles J (1990) Malonylated chalcone glycosides in Dahlia. Phytochemistry 29:2899–2900

    Article  CAS  Google Scholar 

  • Hashimoto F, Tanaka M, Maeda H, Shimizu K, Sakata Y (2000) Characterization of cyanic flower color of Delphinium cultivars. J Jpn Soc Hortic Sci 69:428–434

    Article  CAS  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S (2009) Regulation of anthocyanin biosynthesis in grapes. J Jpn Soc Hortic Sci 78:387–393

    Article  CAS  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2005) Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin-color mutants. J Jpn Soc Hortic Sci 74:196–203

    Article  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Laitinen RAE, Ainasoja M, Broholm SK, Teeri TH, Elomaa P (2008) Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida. J Exp Bot 59:3691–3703

    Article  PubMed  CAS  Google Scholar 

  • Lawrence WJC (1929) The genetics and cytology of Dahlia species. J Genet 21:125–159

    Article  Google Scholar 

  • Lawrence WJC, Scott-Honcrieff R (1935) The genetics and chemistry of flower colour in Dahlia: a new theory of specific pigmentation. J Genet 30:155–226

    Article  CAS  Google Scholar 

  • Mato M, Onozaki T, Ozeki Y, Higeta D, Itoh Y, Hisamatsu T, Yoshida H, Shibata M (2001) Flavonoid biosynthesis in pink-flowered cultivars derived from ‘William Sim’ carnation (Dianthus caryophyllus). J Jpn Soc Hortic Sci 70:315–319

    Article  CAS  Google Scholar 

  • Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55:954–967

    Article  PubMed  CAS  Google Scholar 

  • McClaren B (2009) Encyclopedia of DAHLIAS. Timber Press, Portland

    Google Scholar 

  • Mol J, Grofewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    PubMed  CAS  Google Scholar 

  • Noda KI, Glover BJ, Linstead P, Martin C (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature 369:661–664

    Article  PubMed  CAS  Google Scholar 

  • Nordström CG, Swain T (1953) The flavonoid glycosides of Dahlia variabilis. Part I. General introduction. Cyanidin, apigenin, and luteolin glycosides from the variety “Dandy”. J Chem Soc, 2764–2773

  • Nordström CG, Swain T (1956) The flavonoid glycosides of Dahlia variabilis. II. Glycosides of yellow varieties Pius IX and Coton. Arch Biochem Biophys 60:329–344

    Article  PubMed  Google Scholar 

  • Nordström CG, Swain T (1958) The flavonoid glycosides of Dahlia variabilis. III. Glycosides from white varieties. Arch Biochem Biophys 73:220–223

    Article  PubMed  Google Scholar 

  • Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park K, Nakashima A, Deguchi A, Tatsuzawa F, Doi M, Iida S, Yazawa S (2011a) A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot 62:5105–5116

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Hosokawa M, Kojima M, Kitamura Y, Hoshino A, Tatsuzawa F, Doi M, Yazawa S (2011b) Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. Planta 234:945–958

    Article  PubMed  CAS  Google Scholar 

  • Park KI, Ishikawa N, Morita Y, Choi JD, Hoshino A, Iida S (2007) A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J 49:641–654

    Article  PubMed  CAS  Google Scholar 

  • Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L (2010) Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231:1061–1076

    Article  PubMed  CAS  Google Scholar 

  • Price JR (1939) The yellow colouring matter of Dahlia variabilis. J Chem Soc, 1017–1018

  • Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291

    Article  PubMed  CAS  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JNM, Koes R (2000) Anthocyanin 1 of Petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1631

    PubMed  CAS  Google Scholar 

  • Takeda K, Harborne JB, Self R (1986) Identification and distribution of malonated anthocyanins in plants of the compositae. Phytochemistry 25:1337–1342

    Article  CAS  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  PubMed  CAS  Google Scholar 

  • Uddin AFMJ, Hashimoto F, Miwa T, Ohbo K, Sakata Y (2004) Seasonal variation in pigmentation and anthocyanidin phenetics in commercial Eustoma flowers. Sci Hortic 100:103–115

    Article  CAS  Google Scholar 

  • Yamagishi M, Yoshida Y, Nakayama M (2012) The transcription factor LhMYB12 determines anthocyanin pigmentation in the tepals of Asiatic hybrid lilies (Lilium spp.) and regulates pigment quantity. Mol Breed 30:913–925

    Article  CAS  Google Scholar 

  • Yoshida K, Kondo T, Okazaki Y, Katou K (1995) Cause of blue petal colour. Nature 373:291

    Article  CAS  Google Scholar 

  • Zhu HF, Fitzsimmons K, Khandelwal A, Kranz RG (2009) CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Mol Plant 2:790–802

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sho Ohno or Munetaka Hosokawa.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, S., Deguchi, A., Hosokawa, M. et al. A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars. Planta 238, 331–343 (2013). https://doi.org/10.1007/s00425-013-1897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1897-x

Keywords

Navigation