Skip to main content
Log in

Endogenous post-transcriptional gene silencing of flavone synthase resulting in high accumulation of anthocyanins in black dahlia cultivars

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Black color in flowers is a highly attractive trait in the floricultural industry, but its underlying mechanisms are largely unknown. This study was performed to identify the bases of the high accumulation of anthocyanidins in black cultivars and to determine whether the high accumulation of total anthocyanidins alone leads to the black appearance. Our approach was to compare black dahlia (Dahlia variabilis) cultivars with purple cultivars and a purple flowering mutant of a black cultivar, using pigment and molecular analyses. Black cultivars characteristically exhibited low lightness, high petal accumulation of cyanidin and total anthocyanidins without flavones, and marked suppression of flavone synthase (DvFNS) expression. A comparative study using black and purple cultivars revealed that neither the absence of flavones nor high accumulation of total anthocyanidins is solely sufficient for black appearance, but that cyanidin content in petals is also an important factor in the phenotype. A study comparing the black cultivar ‘Kokucho’ and its purple mutant showed that suppression of DvFNS abolishes the competition between anthocyanidin and flavone synthesis and leads to accumulation of cyanidin and total anthocyanidins that produce a black appearance. Surprisingly, in black cultivars the suppression of DvFNS occurred in a post-transcriptional manner, as determined by small RNA mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANS:

Anthocyanidin synthase

bHLH:

Basic helix–loop–helix

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

F3H:

Flavanone 3-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

FLS:

Flavonol synthase

FNS:

Flavone synthase

GST:

Glutathione S-transferase

GT:

Glucosyltransferase

HPLC:

High performance liquid chromatography

MT:

Malonyltransferase

PTGS:

Post-transcriptional gene silencing

RACE:

Rapid amplified cDNA end

siRNA:

Short interfering RNA

References

  • Akashi T, Fukuchi-Mizutani M, Aoki T, Ueyama Y, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Ayabe SI (1999) Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant Cell Physiol 40:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y, Yakushiji H, Koshita Y, Kobayashi S (2011) Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis × labruscana grapes. Theor Appl Genet 122:1427–1438

    Article  PubMed  Google Scholar 

  • Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM (2003) Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase. Euphytica 131:259–268

    Article  CAS  Google Scholar 

  • De Paoli E, Dorantes-Acosta A, Zhai J, Accerbi M, Jeong DH, Park S, Meyers BC, Jorgensen RA, Green PJ (2009) Distinct extremely abundant siRNAs associated with cosuppression in petunia. RNA 15:1965–1970

    Article  PubMed  Google Scholar 

  • Fliegmann J, Furtwängler K, Malterer G, Cantarello C, Schüler G, Ebel J, Mithöfer A (2010) Flavone synthase II (CYP93B16) from soybean (Glycine max L.). Phytochemistry 71:508–514

    Article  PubMed  CAS  Google Scholar 

  • Gatt M, Ding H, Hammett K, Murray B (1998) Polyploidy and evolution in wild and cultivated Dahlia species. Ann Bot 81:647–656

    Article  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Gen 10:94–108

    Article  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  PubMed  CAS  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB, Greenham J, Eagles J (1990) Malonylated chalcone glycosides in Dahlia. Phytochemistry 29:2899–2900

    Article  CAS  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Brugliera F, Tanaka Y (1993) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J 4:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S (2009) Regulation of anthocyanin biosynthesis in grapes. J Jpn Soc Hortic Sci 78:387–393

    Article  CAS  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2005) Association of VvmybA1 gene expression with anthocyanin production in grape (Vitis vinifera) skin-color mutants. J Jpn Soc Hortic Sci 74:196–203

    Article  CAS  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Kurauchi T, Matsumoto T, Taneda A, Sano T, Senda M (2009) Endogenous short interfering RNAs of chalcone synthase genes associated with inhibition of seed coat pigmentation in soybean. Breed Sci 59:419–426

    Article  CAS  Google Scholar 

  • Lawrence WJC (1929) The genetics and cytology of Dahlia species. J Genet 21:125–159

    Article  Google Scholar 

  • Lawrence WJC (1931) The genetics and cytology of Dahlia variabilis. J Genet 24:257–306

    Article  Google Scholar 

  • Lawrence WJC, Scott-Honcrieff R (1935) The genetics and chemistry of flower colour in dahlia: a new theory of specific pigmentation. J Genet 30:155–226

    Article  CAS  Google Scholar 

  • Mahajan M, Ahuja PS, Yadav SK (2011) Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set. PLoS One 6:e28315

    Article  PubMed  CAS  Google Scholar 

  • Martens S, Forkmann G (1998) Genetic control of flavone synthase II activity in flowers of Gerbera hybrids. Phytochemistry 49:1953–1958

    Article  CAS  Google Scholar 

  • Martens S, Forkmann G (1999) Cloning and expression of flavone synthase II from Gerbera hybrids. Plant J 20:611–618

    Article  PubMed  CAS  Google Scholar 

  • Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399–2407

    Article  PubMed  CAS  Google Scholar 

  • McClaren M (2009) Dahlia: history and species. In: McClaren B (ed) Encyclopedia of dahlias. Timber Press, Portland, pp 161–166

    Google Scholar 

  • Morita Y, Saito R, Ban Y, Tanikawa N, Kuchitsu K, Ando T, Yoshikawa M, Habu Y, Ozeki Y, Nakayama M (2012) Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida. Plant J 70:739–749

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA, Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K, Yamamura S (2005) Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci 168:1309–1318

    Article  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic helix–loop–helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863–1878

    PubMed  CAS  Google Scholar 

  • Nielsen K, Deroles SC, Markham KR, Bradley MJ, Podivinsky E, Manson D (2002) Antisense flavonol synthase alters copigmentation and flower color in lisianthus. Mol Breed 9:217–229

    Article  CAS  Google Scholar 

  • Nordström CG, Swain T (1953) The flavonoid glycosides of Dahlia variabilis. Part I. General introduction cyanidin, apigenin, and luteolin glycosides from the variety “Dandy”. J Chem Soc 2764–2773

  • Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park KI, Nakashima A, Deguchi A, Tatsuzawa F, Doi M, Iida S, Yazawa S (2011a) A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot 62:5105–5116

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Deguchi A, Hosokawa M, Tatsuzawa F, Doi M (2011b) Accumulation of flavonoid pigments characteristic of blackish Dahlia petals. Hortic Res 10(Suppl. 2):564 (In Japanese)

    Google Scholar 

  • Ohno S, Hosokawa M, Kojima M, Kitamura Y, Hoshino A, Tatsuzawa F, Doi M, Yazawa S (2011c) Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. Planta 234:945–958

    Article  PubMed  CAS  Google Scholar 

  • Price JR (1939) The yellow colouring matter of Dahlia variabilis. J Chem Soc 1017–1018

  • Saito N, Mikanagi Y (1989) Sekishokushikiso to sekishokuka. Bio Hortic 3:49–62 (In Japanese)

    Google Scholar 

  • Spelt C, Quattrocchio F, Mol JNM, Koes R (2000) Anthocyanin1 of petunia encodes a basic helix–loop–helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1631

    PubMed  CAS  Google Scholar 

  • Takeda K, Harborne JB, Self R (1986) Identification and distribution of malonated anthocyanins in plants of the compositae. Phytochemistry 25:1337–1342

    Article  CAS  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  PubMed  CAS  Google Scholar 

  • Thill J, Miosic S, Ahmed R, Schlangen K, Muster G, Stich K, Halbwirth H (2012) ‘Le Rouge et le Noir’: a decline in flavone formation correlates with the rare color of black dahlia (Dahlia variabilis hort.) flowers. BMC Plant Biol 12:225

  • Tuteja JH, Zabala G, Varala K, Hudson M, Vodkin LO (2009) Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in Glycine max seed coats. Plant Cell 21:3063–3077

    Article  PubMed  CAS  Google Scholar 

  • Ueyama Y, Suzuki KI, Fukuchi-Mizutani M, Fukui Y, Miyazaki K, Ohkawa H, Kusumi T, Tanaka Y (2002) Molecular and biochemical characterization of torenia flavonoid 3′-hydroxylase and flavone synthase II and modification of flower color by modulating the expression of these genes. Plant Sci 163:253–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yukihiro Fukuda for providing the ‘Kokucho’ mutant line.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sho Ohno or Munetaka Hosokawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deguchi, A., Ohno, S., Hosokawa, M. et al. Endogenous post-transcriptional gene silencing of flavone synthase resulting in high accumulation of anthocyanins in black dahlia cultivars. Planta 237, 1325–1335 (2013). https://doi.org/10.1007/s00425-013-1848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1848-6

Keywords

Navigation