Skip to main content
Log in

Differential expression of the TMV resistance gene N prevents a hypersensitive response in seeds and during germination

  • Short Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The dominant tobacco mosaic virus (TMV) resistance gene N confers a hypersensitive response (HR) at the site of TMV infection and protects tobacco against systemic spread of the virus. To study N gene activity in seeds and early seedling development, the avirulence gene of N, the helicase domain (p50) of the TMV replicase, was constitutively expressed in a tobacco genotype without N (nn). Transgenic F1 expressing N and p50 were generated by crossing with an NN genotype. Surprisingly, Nn F1 seeds expressing p50 are viable and germinate. Only about 5 days after sowing, seedlings started to show an HR. This paralleled the upregulation of several pathogenesis-related and HR genes. The timing of the HR is consistent with the upregulation of N gene transcript 4–6 days after sowing. The expression of p50 has a stimulating effect on the N gene transcript level during germination. These results show that tobacco seeds and very young seedlings do not express a functional N gene product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

TMV:

Tobacco mosaic virus

HR:

Hypersensitive response

PR:

Pathogenesis related

References

  • Abbink TEM, Tjernberg PA, Bol JF, Linthorst HJM (1998) Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Mol Plant Microbe Interact 11:1242–1246

    Article  CAS  Google Scholar 

  • Becker C, Shutov AD, Nong VH, Senyuk VI, Jung R, Horstmann C, Fischer J, Nielsen NC, Müntz K (1995) Purification, cDNA cloning and characterization of proteinase B, an asparagine-specific endopeptidase from germinating vetch (Vicia sativa L.) seeds. Eur J Biochem 228:456–462

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    PubMed  CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    Article  PubMed  CAS  Google Scholar 

  • Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, Dinesh-Kumar SP (2007) A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5:e68

    Article  PubMed  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008a) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135

    Article  PubMed  CAS  Google Scholar 

  • Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008b) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449–462

    Article  PubMed  CAS  Google Scholar 

  • Czernic P, Huang HC, Marco Y (1996) Characterization of hsr201 and hsr515, two tobacco genes preferentially expressed during the hypersensitive reaction provoked by phytopathogenic bacteria. Plant Mol Biol 31:255–265

    Article  PubMed  CAS  Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788

    Article  PubMed  CAS  Google Scholar 

  • Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Nat Acad Sci USA 97:1908–1913

    Article  PubMed  CAS  Google Scholar 

  • Dinesh-Kumar SP, Whitham S, Choi D, Hehl R, Corr C, Baker B (1995) Transposon tagging of tobacco mosaic virus resistance gene N: its possible role in the TMV-N-mediated signal transduction pathway. Proc Nat Acad Sci USA 92:4175–4180

    Article  PubMed  CAS  Google Scholar 

  • Dinesh-Kumar SP, Tham W-H, Baker BJ (2000) Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Nat Acad Sci USA 97:14789–14794

    Article  PubMed  CAS  Google Scholar 

  • Erickson FL, Holzberg S, Calderon-Urrea A, Handley V, Axtell M, Corr C, Baker B (1999) The helicase domain of the TMV replicase proteins induces the N-mediated defence response in tobacco. Plant J 18:67–75

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Harrison K, Jones JD (1994) Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf-9. Proc Nat Acad Sci USA 91:10445–10449

    Article  PubMed  CAS  Google Scholar 

  • Haque A, Sasaki N, Kanegae H, Mimori S, Gao J-S, Nyunoya H (2009) Identification of a Tobacco mosaic virus elicitor-responsive sequence in the resistance gene N. Physiol Mol Plant Pathol 73:101–108

    Article  Google Scholar 

  • Hehl R, Baker B (1989) Induced transposition of Ds by a stable Ac in crosses of transgenic tobacco plants. Mol Gen Genet 217:53–59

    Article  PubMed  CAS  Google Scholar 

  • Hehl R, Faurie E, Hesselbach J, Salamini F, Whitham S, Baker B, Gebhardt C (1999) TMV resistance gene N homologues are linked to Synchytrium endobioticum resistance in potato. Theor Appl Genet 98:379–386

    Article  CAS  Google Scholar 

  • Honée G, Melchers LS, Vleeshouwers VG, van Roekel JS, de Wit PJ (1995) Production of the AVR9 elicitor from the fungal pathogen Cladosporium fulvum in transgenic tobacco and tomato plants. Plant Mol Biol 29:909–920

    Article  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Koyama T, Okada T, Kitajima S, Ohme-Takagi M, Shinshi H, Sato F (2003) Isolation of tobacco ubiquitin-conjugating enzyme cDNA in a yeast two-hybrid system with tobacco ERF3 as bait and its characterization of specific interaction. J Exp Bot 54:1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Edelbaum O, Sela I (2004) Tobacco mosaic virus regulates the expression of its own resistance gene N. Plant Physiol 135:2392–2397

    Article  PubMed  CAS  Google Scholar 

  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B (2012) MicroRNA regulation of plant innate immune receptors. Proc Nat Acad Sci USA 109:1790–1795

    Article  PubMed  CAS  Google Scholar 

  • Marathe R, Anandalakshmi R, Liu Y, Dinesh-Kumar SP (2002) The tobacco mosaic virus resistance gene, N. Mol Plant Pathol 3:167–172

    Article  PubMed  CAS  Google Scholar 

  • Padgett HS, Watanabe Y, Beachy RN (1997) Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. Mol Plant Microbe Interact 10:709–715

    Article  CAS  Google Scholar 

  • Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002) AtKC1, a silent Arabidopsis potassium channel alpha-subunit modulates root hair K+ influx. Proc Natl Acad Sci USA 99:4079–4084

    Article  PubMed  CAS  Google Scholar 

  • Schmidt GW, Delaney SK (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol Genet Genomics 283:233–241

    Article  PubMed  CAS  Google Scholar 

  • Schornack S, Ballvora A, Gürlebeck D, Peart J, Baulcombe D, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37:46–60

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto M, Yamaguchi Y, Nakamura K, Tatsumi Y, Sano H (2004) A hypersensitive response-induced ATPase associated with various cellular activities (AAA) protein from tobacco plants. Plant Mol Biol 56:973–985

    Article  PubMed  CAS  Google Scholar 

  • Takabatake R, Seo S, Mitsuhara I, Tsuda S, Ohashi Y (2006) Accumulation of the two transcripts of the N gene, conferring resistance to tobacco mosaic virus, is probably important for N gene-dependent hypersensitive cell death. Plant Cell Physiol 47:254–261

    Article  PubMed  CAS  Google Scholar 

  • Thangavelu M, Belostotsky D, Bevan MW, Flavell RB, Rogers HJ, Lonsdale DM (1993) Partial characterization of the Nicotiana tabacum actin gene family: evidence for pollen-specific expression of one of the gene family members. Mol Gen Genet 240:290–295

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Yamaguchi Y, Sano H (2006) Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants. Plant Mol Biol 61:31–45

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Ministry of Education and Research (BMBF). Tobacco genotypes and the TMV U1 strain were obtained from Barbara Baker. We are grateful to André Fleißner for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Hehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemeyer, J., Ruhe, J., Machens, F. et al. Differential expression of the TMV resistance gene N prevents a hypersensitive response in seeds and during germination. Planta 237, 909–915 (2013). https://doi.org/10.1007/s00425-012-1832-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1832-6

Keywords

Navigation