Skip to main content
Log in

Production of the AVR9 elicitor from the fungal pathogen Cladosporium fulvum in transgenic tobacco and tomato plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Three constructs were used to study the expression of the avirulence gene Avr9 from the fungal tomato pathogen Cladosporium fulvum in plants. They include pAVIR1, pAVIR2 and pAVIR21, encoding the wild-type AVR9 protein and two hybrid AVR9 proteins containing the signal sequences of the pathogenesis-related proteins PR-S and PR-1a, respectively. Transgenic tobacco plants obtained with the three constructs showed a normal phenotype and produced AVR9 elicitor with the same specific necrosis-inducing activity as the wild-type AVR9 elicitor produced in planta by isolates of C. fulvum containing the Avr9 gene. Level of expression was not correlated with number of T-DNA integrations, but plants homozygous for the Avr9 gene produced more elicitor protein than heterozygous plants. The amino acid sequence of the processed AVR9 peptide present in apoplastic fluid (AF) of pAVIR1 transformed plants producing the wild-type AVR9 elicitor was identical to that of the wild-type AVR9 peptide isolated from C. fulvum-infected tomato leaves. Transgenic Cf0 genotypes of tomato, obtained by transformation with construct pAVIR21, showed a normal phenotype. However, transgenic F1 plants expressing the Avr9 gene, obtained from crossing transgenic Cf0 genotypes with wild-type Cf9 genotypes, showed delayed growth, necrosis and complete plant death indicating that the AVR9 peptide produced in plants carrying the Cf9 gene is deleterious. The necrotic defence response observed in Cf9 genotypes expressing the Avr9 gene support the potential to apply avirulence genes in molecular resistance breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahern TJ, Klibanov AM: The mechanism of irreversible enzyme inactivation at 100°C. Science 228: 1280–1284 (1985).

    Google Scholar 

  2. Cornelissen BJC, Hooftvan Huijsduijnen RAM, Bol JF: A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin. Nature 321: 531–532 (1986).

    Google Scholar 

  3. Cornelissen BJC, Horowitz J, vanKan JAL, Goldberg RB, Bol JF: Structure of tobacco genes encoding pathogenesis-related proteins from PR-1 group. Nucl Acids Res 15: 6799–6811 (1987).

    Google Scholar 

  4. Crute IR: The genetic bases of relationships between microbial parasites and their hosts. In: Fraser RSS (ed) Mechanisms of Resistance to Plant Diseases, pp. 80–142. Nijhoff/Junk, Dodrecht (1985).

    Google Scholar 

  5. Culver JN, Dawson WO: Tobacco mosaic virus elicitor coat protein genes produce a hypersensitive phenotype in transgenic Nicotiana sylvestris plants. Mol Plant-Microbe Interact 4: 458–463 (1991).

    Google Scholar 

  6. Day PR: Genetics of Host-Parasite Interactions. Freeman, San Fransisco (1974).

    Google Scholar 

  7. de Feyter R, Yang Y, Gabriel DW: Gene-for-gene interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol Plant-Microbe Interact 6: 225–237 (1993).

    Google Scholar 

  8. de Wit PJGM, Spikman G: Evidence for the occurrence of race-and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato. Physiol Plant Path 21: 1–11 (1982).

    Google Scholar 

  9. de Wit PJGM, Hofman AE, Velthuis GCM, Kuć JA: Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato. Plant Physiol 77: 642–647 (1985).

    Google Scholar 

  10. de Wit PJGM. Molecular characterization of gene-for-gene systems in plant fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopath 30: 391–418 (1992).

    Google Scholar 

  11. de Wit PJGM: Fungal avirulence genes and plant resistance genes: unravelling the molecular basis of gene-for-gene interactions. Adv Plant Path, in press (1995).

  12. Dixon RA, Harrison MJ, Lamb CJ: Early events in the activation of plant responses. Annu Rev Phytopath 32: 479–501 (1994).

    Google Scholar 

  13. Flor HH: Inheritance of pathogenicity in Melampsora lini. Phytopathology 32: 653–669 (1942).

    Google Scholar 

  14. Hammond-Kosack KE, Harrison K, Jones JDG: Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf-9. Proc Natl Acad Sci USA 91: 10445–10449 (1994).

    Google Scholar 

  15. Hood EE, Gelvin SB, Melchers LS, Hoekema A: New Agrobacterium helper plasmids for gene transfer to plants. Transgen Res 2: 208–218 (1993).

    Google Scholar 

  16. Hopkins CM, White FF, Choi S-H, Guo A, Leach JE: Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant-Microbe Interact 5: 451–459 (1992).

    Google Scholar 

  17. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT: A simple and general method for transferring genes into plants. Science 227: 1229–1231 (1985).

    Google Scholar 

  18. Jobling SA, Gehrke L: Enhanced translation of chimearic messenger RNAs containing a plant viral untranslated leader sequence. Nature 325: 622–625 (1987).

    Google Scholar 

  19. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti P, Jones JDG: Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789–793 (1994).

    Google Scholar 

  20. Jongedijk E, Tigelaar H, van Roekel JSC, Bres-Vloermans SA, Dekker I, van den Elzen PJM, Cornelissen BJC, Melchers LS: Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, in press (1995).

  21. Joosten MHAJ, Cozijnsen TJ, deWit PJGM: Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367: 384–386 (1994).

    Google Scholar 

  22. Kamoun S, Klucher KM, Coffey MD, Tyler BM: A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol Plant-Microbe Interact 6: 573–581 (1993).

    Google Scholar 

  23. Keen NT: Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24: 447–463 (1990).

    Google Scholar 

  24. Keen NT, Midland SL, Boyd C, Yucel I, Tsurushima T, Lorang J, Sims JJ: Syringolide elicitors specified by avirulence gene D alleles in Pseudomonas syringae. In: Daniels MJ, Downie JA, Osbourn AE (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol. 3, pp. 41–48. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  25. Kobayashi DY, Tamaki SJ, Keen NT: Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer specificity on soybean. Proc Natl Acad Sci USA 86: 157–161 (1989).

    Google Scholar 

  26. Köhm BA, Goulden MG, Gilbert JE, Kavanagh TA, Baulcombe DC: A potato virus X resistance gene mediates an induced, nonspecific resistance in protoplasts. Plant Cell 5: 913–920 (1993).

    Google Scholar 

  27. Knogge W, Gierlich A, Hermann H, Wernert P, Rohe M: Molecular indentification and characterization of the NIP1 gene, an avirulence gene from the barley pathogen Rhynchosporium secalis. In: Daniels MJ, Downie JA, Osbourn A (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol. 3, pp. 207–214. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  28. Lindhout P, Korta W, Cislik M, Vos I, Gerlagh T: Further identification of races of Cladopsorium fulvum (Fulvia fulva) on tomato originating from the Netherlands, France and Poland. Neth J Plant Path 95: 143–148 (1989).

    Google Scholar 

  29. Linthorst HJM, Meuwissen RLJ, Kauffmann S, Bol JF: Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell 1: 285–291 (1989).

    Google Scholar 

  30. Long SR, Stasckawicz BJ: Prokaryotic plant parasites. Cell 73: 921–935 (1993).

    Google Scholar 

  31. Maniatis T, Fritsch E, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1982).

    Google Scholar 

  32. Pfitzner UM, Pfitzner AJP: Expression of a viral avirulence gene in transgenic plants is sufficient to induce the hypersensitive defence reaction. Mol Plant-Microbe Interact 5: 318–321 (1992).

    Google Scholar 

  33. Reisfeld RA, Lewis UJ, Wiliams DJ: Disk electrophoresis of basic proteins and peptides on polyacrylamide gels by formaldehyde fixation. Anal Biochem 107: 21–24 (1962).

    Google Scholar 

  34. Scholtens-Toma IMJ, deWit PJGM: Purification and primary structure of a necrosis-inducing peptide from the apoplastic fluids of tomato infected with Cladosporium fulvum (syn. Fulvia fulva). Physiol Mol Plant Path 33: 59–67 (1988).

    Google Scholar 

  35. Sijmons PC, Dekker BMM, Schrammeijer B, Verwoerd TC, van denElzen PJM, Hoekema A: Production of correctly processed human serum albumin in transgenic plants. Bio/technology 8: 217–221 (1990).

    Google Scholar 

  36. Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JDG: Molecular genetics of plant disease resistance. Science 268: 661–667 (1995).

    Google Scholar 

  37. Steck G, Leuthärd P, Bürk RR: Detection of basic proteins and low molecular weight peptides in polyacrylamide gels by formaldehyde fixation. Anal Biochem 107: 21–24 (1980).

    Google Scholar 

  38. Valent B, Chumley FG: Avirulence genes and mechanisms of genetic instability in the rice blast fungus. In: Zeigler RS, Leong SA, Teng PS, (eds) Rice blast disease, pp. 111–134. CAB International, Oxon (1994).

    Google Scholar 

  39. van den Ackerveken GFJM, vanKan JAL, deWit PJGM: Molecular analysis of the avirulence gene Avr9 of the tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J 2: 359–366 (1992).

    Google Scholar 

  40. van den Ackerveken GFJM, Vossen P, deWit PJGM: The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiol 103: 91–96 (1993).

    Google Scholar 

  41. van Kan JAL, van denAckerveken GFJM, deWit PJGM: Cloning and characterization of cDNA of avirulene gene Avr9 of the fungal tomato pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant Microbe Interact 4: 52–59 (1991).

    Google Scholar 

  42. van Roekel JSC, Damm B, Melchers LS, Hoekema A: Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Rep 12: 644–647 (1993).

    Google Scholar 

  43. Verwoerd TC, Dekker BMM, Hoekema A: A small-scale procedure for the rapid isolation of plant RNA's. Nucl Acids Res 17: 2362 (1989).

    Google Scholar 

  44. Von Heijne G: A new method for predicting signal sequence cleavage sites. Nucl Acids Res 14: 4683–4690 (1986).

    Google Scholar 

  45. Wada K-I, Aota S-I, Tsuchiya R, Ishibashi F, Gojobori T, Ikemura T: Codon usage tabulated from the GenBank genetic sequence data. Nucl Acids Res 18: 2367–2411 (1990).

    Google Scholar 

  46. Yang Y, deFeyter R, Gabriel DW: Host-specific symptoms and increased release of Xanthomonas citri and Xanthomonas campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Mol Plant-Microbe Interact 7: 345–355 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honée, G., Melchers, L.S., Vleeshouwers, V.G.A.A. et al. Production of the AVR9 elicitor from the fungal pathogen Cladosporium fulvum in transgenic tobacco and tomato plants. Plant Mol Biol 29, 909–920 (1995). https://doi.org/10.1007/BF00014965

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00014965

Key words

Navigation