Skip to main content
Log in

The PSBP2 protein of Chlamydomonas reinhardtii is required for singlet oxygen-dependent signaling

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In the green alga Chlamydomonas reinhardtii, the cytosolic GLUTATHIONE PEROXIDASE 5 gene (GPX5) is known to be transcriptionally up-regulated in response to singlet oxygen (1O2). As demonstrated by previous studies, fusion of the promoter region of GPX5 to the ARYLSULFATASE 2 gene (ARS2) creates an effective reporter system that can be used to monitor 1O2-driven GPX5 expression. This system was also used in this study to generate a stably transformed C. reinhardtii strain which expresses ARS2 in a 1O2-dependent manner, resulting in the synthesis of a functional protein with detectable activity. Using the strain of C. reinhardtii harboring a 1O2-sensitive reporter construct, a secondary mutagenic screen was performed. This allowed identification of mutant cell lines that were unable to up-regulate expression of the GPX5ARS2 fusion in response to 1O2. In one of these lines, the mutation was subsequently localized to the first exon of the PSBP-like gene (PSBP2). The PSBP2 gene is part of a small protein family in C. reinhardtii, also present in all angiosperms studied thus far. While each member of the PSBP protein family contains a similar domain to the PSBP1 protein, which is a member of the oxygen evolving complex of photosystem II (PSII), the PSBP2 protein does not appear to be involved in PSII function, but may function as a sensor and/or signal mediating molecule of the 1O2 generated in the chloroplast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

1 − q L :

Excitation pressure

1O2 :

Singlet oxygen

ARS2 :

ARYLSULPHATASE 2

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

F v/F m :

Maximal quantum efficiency of PSII

GL:

Growth light

GPX5 :

GLUTATHIONE PEROXIDASE 5

H2O2 :

Hydrogen peroxide

HL:

High light

ML:

Moderate light

NR:

Neutral red (3-amino-7-dimethylamino-2-methylphenazine hydrochloride)

NPQ:

Non-photochemical quenching

PPD:

PSBP domain

PPL:

PSBP-like

PSI:

Photosystem I

PSII:

Photosystem II

RACE:

Rapid amplification of cDNA ends

RB:

Rose Bengal (4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein)

RESDA:

Restriction-enzyme site-directed amplification

ROS:

Reactive oxygen species

sqRT:

Semi-quantitative reverse transcriptase

TAP:

Tris–acetate–phosphate

t-BOOH:

tert-Butyl hydroperoxide

TP:

Tris–phosphate

References

  • Andersen RA (2005) Algal culturing techniques. Elsevier Academic Press, Burlington

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Auchincloss AH, Loroch AI, Rochaix JD (1999) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: cloning of the cDNA and its characterization as a selectable shuttle marker. Mol Gen Genet 261:21–30

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1995) Molecular basis of the vulnerability of photosystem-II to damage by light. Aust J Plant Physiol 22:201–208

    Article  CAS  Google Scholar 

  • Baruah A, Simkova K, Apel K, Laloi C (2009) Arabidopsis mutants reveal multiple singlet oxygen signaling pathways involved in stress response and development. Plant Mol Biol 70:547–563

    Article  PubMed  CAS  Google Scholar 

  • Beale SI (2011) Chloroplast signaling: retrograde regulation revelations. Curr Biol 21:R391–R393

    Article  PubMed  CAS  Google Scholar 

  • Beck CF (2005) Signaling pathways from the chloroplast to the nucleus. Planta 222:743–756

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinforma 6:167

    Article  Google Scholar 

  • Berry LL, Brzezowski P, Wilson KE (2011) Inactivation of the STT7 gene protects PsaF-deficient Chlamydomonas reinhardtii cells from oxidative stress under high light. Physiol Plant 141:188–196

    Article  PubMed  CAS  Google Scholar 

  • Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:401–412

    Article  PubMed  CAS  Google Scholar 

  • Björn LO (2008) The nature of light and its interaction with matter. In: Björn LO (ed) Photobiology: the science of life and light, 2nd edn. Springer, New York, pp 1–39

    Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Annu Rev Biochem 58:79–110

    Article  PubMed  CAS  Google Scholar 

  • Davies JP, Weeks DP, Grossman AR (1992) Expression of the arylsulfatase gene from the β2-tubulin promoter in Chlamydomonas reinhardtii. Nucl Acids Res 20:2959–2965

    Article  PubMed  CAS  Google Scholar 

  • de Hostos EL, Togasaki RK, Grossman A (1988) Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinhardtii. J Cell Biol 106:29–38

    Article  PubMed  Google Scholar 

  • de Hostos EL, Schilling J, Grossman AR (1989) Structure and expression of the gene encoding the periplasmic arylsulfatase of Chlamydomonas reinhardtii. Mol Gen Genet 218:229–239

    Article  PubMed  Google Scholar 

  • de Vitry C, Olive J, Drapier D, Recouvreur M, Wollman FA (1989) Posttranslational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol 109:991–1006

    Article  PubMed  Google Scholar 

  • Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137:545–556

    Article  PubMed  CAS  Google Scholar 

  • Depege N, Bellafiore S, Rochaix JD (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330:115–120

    PubMed  CAS  Google Scholar 

  • Dietz KJ, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485

    Article  PubMed  CAS  Google Scholar 

  • Fernandez AP, Strand Å (2008) Retrograde signaling and plant stress: plastid signal initiates cellular stress responses. Curr Opin Plant Biol 11:509–513

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Rochaix J-D (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265:888–894

    Article  PubMed  CAS  Google Scholar 

  • Fischer BB, Dayer R, Wiesendanger M, Eggen RIL (2007) Independent regulation of the GPXH gene expression by primary and secondary effects of high light stress in Chlamydomonas reinhardtii. Physiol Plant 130:195–206

    Article  CAS  Google Scholar 

  • Fischer BB, Dayer R, Schwarzenbach Y, Lemaire SD, Behra R, Liedtke A, Eggen RIL (2009) Function and regulation of the glutathione peroxidase homologous gene GPXH/GPX5 in Chlamydomonas reinhardtii. Plant Mol Biol 71:569–583

    Article  PubMed  CAS  Google Scholar 

  • Fischer BB, Eggen RIL, Niyogi KK (2010) Characterization of singlet oxygen-accumulating mutants isolated in a screen for altered oxidative stress response in Chlamydomonas reinhardtii. BMC Plant Biol 10:279

    Article  PubMed  CAS  Google Scholar 

  • Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van Breusegem F (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445

    Article  PubMed  CAS  Google Scholar 

  • Galvez-Valdivieso G, Mullineaux PM (2010) The role of reactive oxygen species in signalling from chloroplasts to the nucleus. Physiol Plant 138:430–439

    Article  PubMed  CAS  Google Scholar 

  • Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 266:1478–1483

    PubMed  CAS  Google Scholar 

  • Genty B, Harbinson J, Briantais JM, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosynth Res 25:249–257

    Article  CAS  Google Scholar 

  • González-Ballester D, de Montaigu A, Galvan A, Fernandez E (2005) Restriction enzyme site-directed amplification PCR: a tool to identify regions flanking a marker DNA. Anal Biochem 340:330–335

    Article  PubMed  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 54:1665–1669

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Horton P, Park KJ, Obayashi T, Nakai K (2006) Protein subcellular localization prediction with WOLF PSORT. Ser Adv Bioinform 3:39–48

    Article  CAS  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucl Acids Res 35:W585–W587

    Article  PubMed  Google Scholar 

  • Ifuku K, Yamamoto Y, Ono T, Ishihara S, Sato F (2005) PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol 139:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Ifuku K, Ishihara S, Shimamoto R, Ido K, Sato F (2008) Structure, function, and evolution of the PsbP protein family in higher plants. Photosynth Res 98:427–437

    Article  PubMed  CAS  Google Scholar 

  • Ishihara S, Takabayashi A, Ido K, Endo T, Ifuku K, Sato F (2007) Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol 145:668–679

    Article  PubMed  CAS  Google Scholar 

  • Kim C, Lee KP, Baruah A, Nater M, Gobel C, Feussner I, Apel K (2009) 1O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid. Proc Natl Acad Sci USA 106:9920–9924

    Article  PubMed  CAS  Google Scholar 

  • Kochevar IE (2004) Singlet oxygen signaling: from intimate to global. Sci STKE 221:7

    Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  PubMed  CAS  Google Scholar 

  • Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynth Res 98:551–564

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Apel K, Danon A (2004) Reactive oxygen signalling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  PubMed  CAS  Google Scholar 

  • Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K (2007) Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:672–677

    Article  PubMed  CAS  Google Scholar 

  • Ledford HK, Chin BL, Niyogi KK (2007) Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell 6:919–930

    Article  PubMed  CAS  Google Scholar 

  • Leisinger U, Rufenacht K, Fischer B, Pesaro M, Spengler A, Zehnder AJB, Eggen RIL (2001) The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol 46:395–408

    Article  PubMed  CAS  Google Scholar 

  • Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M (2008) A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Gene Dev 22:918–930

    Article  PubMed  CAS  Google Scholar 

  • Mayfield SP, Rahire M, Frank G, Zuber H, Rochaix JD (1987) Expression of the nuclear gene encoding oxygen-evolving enhancer protein 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 84:749–753

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–251

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  PubMed  CAS  Google Scholar 

  • Ohresser M, Matagne RF, Loppes R (1997) Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 31:264–271

    Article  PubMed  CAS  Google Scholar 

  • Page DR, Kohler C, da Costa-Nunes JA, Baroux C, Moore JM, Grossniklaus U (2004) Intrachromosomal excision of a hybrid Ds element induces large genomic deletions in Arabidopsis. Proc Natl Acad Sci USA 101:2969–2974

    Article  PubMed  CAS  Google Scholar 

  • Rochaix JD (1987) Molecular genetics of chloroplast and mitochondria in the unicellular green alga Chlamydomonas. FEMS Microbiol Rev 46:13–34

    Article  CAS  Google Scholar 

  • Saini G, Meskauskiene R, Pijacka W, Roszak P, Sjogren LLE, Clarke AK, Straus M, Apel K (2011) ‘happy on norflurazon’ (hon) mutations implicate perturbance of plastid homeostasis with activating stress acclimatization and changing nuclear gene expression in norflurazon-treated seedlings. Plant J 65:690–702

    Article  PubMed  CAS  Google Scholar 

  • Schloss JA (1990) A Chlamydomonas gene encodes a G protein β subunit-like polypeptide. Mol Gen Genet 221:443–452

    Article  PubMed  CAS  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    PubMed  CAS  Google Scholar 

  • Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229

    Article  PubMed  CAS  Google Scholar 

  • Stevens DR, Rochaix JD, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251:23–30

    PubMed  CAS  Google Scholar 

  • Tam LW, Lefebvre PA (1993) Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135:375–384

    PubMed  CAS  Google Scholar 

  • Taylor WC (1989) Regulatory interactions between nuclear and plastid genomes. Annu Rev Plant Physiol Plant Mol Biol 40:211–233

    Article  CAS  Google Scholar 

  • Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  PubMed  CAS  Google Scholar 

  • Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205

    Article  PubMed  CAS  Google Scholar 

  • Voss B, Meinecke L, Kurz T, Al-Babili S, Beck CF, Hess WR (2011) Hemin and magnesium-protoporphyrin IX induce global changes in gene expression in Chlamydomonas reinhardtii. Plant Physiol 155:892–905

    Article  PubMed  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

  • Zurbriggen MD, Carrillo N, Tognetti VB, Melzer M, Peisker M, Hause B, Hajirezaei MR (2009) Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. Plant J 60:962–973

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Chlamydomonas Center for supplying algal strains and plasmids. They would also like to thank Dr. Wolfgang Mages (Universität Regensburg) for the gift of the pHYG3 plasmid, Dr. Saul Purton (University College London) for the gift of the pSP124s plasmid, and Dr. Jean-David Rochaix (University of Geneva) for the wild-type 6C+. The work in KEW’s laboratory was supported by Discovery, and Research Tools and Instruments Grants from the Natural Science and Engineering Research Council (NSERC) of Canada, a New Opportunities Grant from the Canadian Foundation for Innovation and by institutional funding from the University of Saskatchewan. GRG is also supported by an NSERC Discovery grant. PB was supported, in part, by the Department of Biology, University of Saskatchewan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon R. Gray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 14 kb)

Supplementary material 2 (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzezowski, P., Wilson, K.E. & Gray, G.R. The PSBP2 protein of Chlamydomonas reinhardtii is required for singlet oxygen-dependent signaling. Planta 236, 1289–1303 (2012). https://doi.org/10.1007/s00425-012-1683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1683-1

Keywords

Navigation